Towards homotopy canonicity for
propositional type theory

Benno van den Berg
ILLC, University of Amsterdam

Workshop on the Strength of Weak Type Theory
Amsterdam, 12 May 2023

1/19



Traditional picture

Traditional view

Computation = normalisation = what the machine does

From this point of view, the two forms of equality reflect a division of
labour.

o Definitional equality: something the machine checks

o Propositional equality: something the human has to prove

2/19



Traditional picture

Traditional view

Computation = normalisation = what the machine does

From this point of view, the two forms of equality reflect a division of
labour.

o Definitional equality: something the machine checks

o Propositional equality: something the human has to prove
There are a number of issues with this:

@ How do we decide who does what?

@ Type checking and checking definitional equality can be terribly
expensive.

2/19



Is this really a proof?

We usually think of proofs as explaining why something is the true (giving
the reason why something is true). But does this happen in type theory?

3/19



Is this really a proof?

We usually think of proofs as explaining why something is the true (giving
the reason why something is true). But does this happen in type theory?

Let A be the Ackermann function.

3/19



Is this really a proof?

We usually think of proofs as explaining why something is the true (giving
the reason why something is true). But does this happen in type theory?

Let A be the Ackermann function.

Then:

- refl(A(3,25%5%6 — 3)) e Id(N, A(3, 295536 — 3), A(4,3)).

3/19



Is this really a proof?

We usually think of proofs as explaining why something is the true (giving
the reason why something is true). But does this happen in type theory?

Let A be the Ackermann function.
Then:

- refl(A(3,25%5%6 — 3)) e Id(N, A(3, 295536 — 3), A(4,3)).

Compare:

- refl(A(3,2°%%° — 3)) € Td(N, A(3,2%°%%% — 3), A(4,3)).

3/19



Decidability

The question whether the following judgments are derivable is decidable:

N-o=r71
lFa=beo
lFaeo

4/19



Decidability

The question whether the following judgments are derivable is decidable:

N-o=r71
lFa=beo
lFaeo

Indeed, the first two are decidable by normalisation and the third by
backwards proof search.

4/19



Decidability

The question whether the following judgments are derivable is decidable

N-o=r71
lFa=beo
lFaeo

Indeed, the first two are decidable by normalisation and the third by
backwards proof search.

So these questions are decidable in theory. But are they also decidable in

practice?

4/19



Decidability

The question whether the following judgments are derivable is decidable:

N-o=r71
lFa=beo
lFaeo

Indeed, the first two are decidable by normalisation and the third by
backwards proof search.

So these questions are decidable in theory. But are they also decidable in
practice?

Theorem (Statman, 1979) J

Equality in the typed lambda calculus is not elementary recursive.

Since type checking relies on checking definitional equalities, type checking

is also not elementary recursive.
4/19



Quote from Geuvers and Wiedijk

Quote

In theorem provers based on type theory the main performance bottleneck
is the convertibility check: if the calculated type of a term M is A, but it
used in a context where the type should be B, then the system needs to
verify that A =g,s B, where § is the equality arising from definitional
expansion (unfolding definitions) and ¢ is the equality arising from
functions defined by (higher order primitive) recursion. In fact, the
inefficiency of the convertibility check means that type correctness is in
practice only semi-decidable. Although in theory it is decidable whether a
term M has type A, in practice when it is not correct the system could be
endlessly reducing and would not terminate in an acceptable time anymore.

From: Herman Geuvers and Freek Wiedijk. A logical framework with
explicit conversions. Electronic Notes in Theoretical Computer Science 199
(2008), 33-47.

5/19



Towards propositional type theory

It is not clear that ...
@ the machine should normalise.
@ normalisation is the only thing the machine should do.

This also does not seem to be what happens in reality.
More realistic picture: the default option is that the human does

everything and then we let pragmatic considerations decide what to leave
to the machine.

6/19



Propositional type theory
Propositional type theory

Propositional type theory is a version of type theory without definitional
equality and in which all computation rules are stated in propositional

form. (Other names: homotopy type theory with explicit conversions or
objective type theory.)

7/19



Propositional type theory

Propositional type theory

Propositional type theory is a version of type theory without definitional
equality and in which all computation rules are stated in propositional
form. (Other names: homotopy type theory with explicit conversions or
objective type theory.)

Theorem (den Besten & BvdB)

The question whether I' - a € ¢ is derivable in propositional type theory or
not can be decided in quadratic time.

v

7/19



Propositional type theory

Propositional type theory

Propositional type theory is a version of type theory without definitional
equality and in which all computation rules are stated in propositional
form. (Other names: homotopy type theory with explicit conversions or
objective type theory.)

Theorem (den Besten & BvdB)

The question whether I' - a € ¢ is derivable in propositional type theory or
not can be decided in quadratic time.

v

Claim

All the basic stuff of HoTT (first so many chapters of the HoTT book)
can be formalised in HoTT with explicit conversions.

7/19



Propositional type theory

Propositional type theory

Propositional type theory is a version of type theory without definitional
equality and in which all computation rules are stated in propositional
form. (Other names: homotopy type theory with explicit conversions or
objective type theory.)

Theorem (den Besten & BvdB)

The question whether I' - a € ¢ is derivable in propositional type theory or
not can be decided in quadratic time.

Claim
All the basic stuff of HoTT (first so many chapters of the HoTT book)
can be formalised in HoTT with explicit conversions.

Question

To what extent is standard homotopy type theory conservative over
homotopy type theory with explicit conversions? 1/




Propositional type theory

Arguments in favour of propositional type theory (or homotopy type theory
with explicit conversions):

@ Type-checking efficiently decidable
@ Proofs become explanatory

@ Sometimes arbitrary which equalities are propositional and which
definitional in standard type theory (two forms of plus)

@ Natural from homotopy-theoretic point of view

8/19



Propositional type theory

Arguments in favour of propositional type theory (or homotopy type theory
with explicit conversions):

@ Type-checking efficiently decidable
@ Proofs become explanatory

@ Sometimes arbitrary which equalities are propositional and which
definitional in standard type theory (two forms of plus)

@ Natural from homotopy-theoretic point of view
Drawbacks:

@ Proof terms become very long!

8/19



Is propositional type theory still a framework for
computation?

Type-theoretic paradigm

Computation = normalisation J

What remains of this without definitional equality?

9/19



Is propositional type theory still a framework for
computation?

Type-theoretic paradigm
Computation = normalisation }

What remains of this without definitional equality?

Conjecture

Propositional type theory still enjoys homotopy canonicity.

Homotopy canonicity

Given a closed term t of type N there exist a numeral S¥(0) and a proof
term p such that I- p € Id(N, t, $¥(0)).

Of course, we want an effective proof: we want to be able to effectively
obtain p and k from t.

9/19



Glueing

A nice categorical method for proving canonicity is glueing (aka sconing or
the Freyd cover).

This is also what has been used by Kapulkin & Sattler in their proof of
homotopy canonicity of (standard) homotopy type theory.

The classical source for this method is Lambek & Scott’s book on higher
order categorical logic. Let's revisit that proof.

10/19



Glueing

A nice categorical method for proving canonicity is glueing (aka sconing or
the Freyd cover).

This is also what has been used by Kapulkin & Sattler in their proof of
homotopy canonicity of (standard) homotopy type theory.

The classical source for this method is Lambek & Scott’s book on higher
order categorical logic. Let's revisit that proof.

By a topos we mean an elementary topos with a natural numbers object.
The initial topos (the initial object in the category whose objects are
toposes and whose morphisms are logical functors) is built from the syntax
of higher-order arithmetic.

10/19



Topos-theoretic glueing

Glueing

Let F : £ — F be a functor between toposes preserving finite limits. Then
we can build a new topos GI(F) as follows:

Objects: Triple (X, A, «) consisting of an object X in &, an object A
in F and a morphism « : X — FA.

Morphisms: A morphism (X, A, a) — (Y, B, 3) is a pair of morphisms
f: X —Yand g: A— B such that

commutes.

Moreover, the forgetful functor GI(F) — F is logical.

11/19



Freyd cover
Let 7 be the initial topos and consider the functor

[:Z — Sets

sending X to Homg(1, X) (“the global sections functor”).

12/19



Freyd cover

Let 7 be the initial topos and consider the functor
I:Z — Sets

sending X to Homg(1, X) (“the global sections functor”). This functor
preserves limits, hence we obtain a logical functor

U:GI(T) — T.

12/19



Freyd cover

Let 7 be the initial topos and consider the functor
I:Z — Sets

sending X to Homg(1, X) (“the global sections functor”). This functor
preserves limits, hence we obtain a logical functor

U:GI(T) — T.

Since Z is initial, we have a logical functor V : Z — GI(I') such that
UoV =1

12/19



Freyd cover

Let 7 be the initial topos and consider the functor
I:Z — Sets

sending X to Homg(1, X) (“the global sections functor”). This functor
preserves limits, hence we obtain a logical functor

U:GI(T) — T.

Since Z is initial, we have a logical functor V : Z — GI(I') such that
UoV =1

Now consider a term t : 1 — N in Z and its image under V:

k

1——N

]

M—=rN

12/19



Freyd cover
Let 7 be the initial topos and consider the functor

[:Z — Sets

sending X to Homg(1, X) (“the global sections functor”). This functor
preserves limits, hence we obtain a logical functor

U:GI(T) — T.

Since Z is initial, we have a logical functor V : Z — GI(I') such that
UoV =1.
Now consider a term t : 1 — N in Z and its image under V:

k

1——N

]

M—=rN

The top map is some k € N and the commutativity of the square tells us
that Sk0 =t in Z.

12/19



A variation for propositional type theory

The idea would be to find a similar proof for propositional type theory.

13/19



A variation for propositional type theory
The idea would be to find a similar proof for propositional type theory.

Let's just pretend that:
@ path categories are an unproblematic semantics for propositional type
theory (no coherence issues),
@ and that there is an initial object Z in the category of path categories
and exact functors and it is built from the syntax of propositional
type theory.

13/19



A variation for propositional type theory

The idea would be to find a similar proof for propositional type theory.

Let's just pretend that:
@ path categories are an unproblematic semantics for propositional type
theory (no coherence issues),
@ and that there is an initial object Z in the category of path categories
and exact functors and it is built from the syntax of propositional
type theory.

Exact functor

If £ and F are path categories, then a functor F : £ — F is exact if it
preserves fibrations, weak equivalences, the terminal object and pullbacks
of fibrations.

(To make it really interesting we need to consider path categories with
homotopy [-types, a homotopy natural numbers object and a univalent
fibration, among other things.)

13/19



Glueing for path categories
Glueing for path categories (De Boer)

Let F : £ — F be an exact functor between path categories. Then we can
build a new path category as follows:

Objects: Triple (X, A, «) consisting of an object X in &, an object A
in F and a fibration o : X — FA.

Morphisms: A morphism (X, A,a) — (Y, B, 3) is a pair of morphisms
f: X —Yand g: A— B such that

X——Y

o l

commutes.

Equivalences are pointwise and the fibrations are the Reedy fibrations.
Moreover, the forgetful functor GI(F) — F is exact.

1419



Freyd cover?

Now one would like to have an exact functor
I:7Z — Sets.
How to turn Sets into a path category? Probably every map should be a

fibration and the equivalences should be the isomorphism. But then the
global sections functor is not exact.

15/19



Freyd cover?

Now one would like to have an exact functor
I:7Z — Sets.
How to turn Sets into a path category? Probably every map should be a

fibration and the equivalences should be the isomorphism. But then the
global sections functor is not exact.

But shouldn’t really glue to Sets, but to the category of co-groupoids. But
how to construct an exact functor from Z to the category of oo-groupoids?

15/19



Freyd cover?

Now one would like to have an exact functor
[:Z — Sets.

How to turn Sets into a path category? Probably every map should be a
fibration and the equivalences should be the isomorphism. But then the
global sections functor is not exact.

But shouldn’t really glue to Sets, but to the category of co-groupoids. But
how to construct an exact functor from Z to the category of oo-groupoids?

This is really hard, if not impossible!

15/19



Following Kapulkin & Sattler

Idea
We replace Z by frames on Z and then take the global sections functor to
semisimplicial Kan complexes.

Roughly speaking, frames on C is the path category of semisimplicial
objects in C with a Reedy-type structure.

Theorem (Paauw)

If C is a path category, then so is the category of frames on C and there is
a functor evg : Fr(C) — C which is an acyclic fibration of path categories.

v

Theorem (Paauw)

There exists a global sections functor I : Fr(C) — ssKan which is exact.

v

As Kapulkin & Sattler observe, this is enough to perform the glueing
construction and obtain homotopy canonicity.

16/19



Issues

@ It is unclear whether semisimplicial sets carry a model of full
propositional type theory (how about homotopy [-types?).

17/19



Issues

@ It is unclear whether semisimplicial sets carry a model of full
propositional type theory (how about homotopy [-types?).

o Kapulkin & Sattler then use the right Kan extension ssSets — sSets
to get to a genuine model of homotopy type theory.

17/19



Issues

@ It is unclear whether semisimplicial sets carry a model of full
propositional type theory (how about homotopy [-types?).

o Kapulkin & Sattler then use the right Kan extension ssSets — sSets
to get to a genuine model of homotopy type theory.

@ But since the model in simplicial sets is non-constructive, this only
gives us an ineffective form of homotopy canonicity.

17/19



Issues

@ It is unclear whether semisimplicial sets carry a model of full
propositional type theory (how about homotopy [-types?).

o Kapulkin & Sattler then use the right Kan extension ssSets — sSets
to get to a genuine model of homotopy type theory.

@ But since the model in simplicial sets is non-constructive, this only
gives us an ineffective form of homotopy canonicity.

e Can we use a constructive version of simplicial sets? (Unclear to me if
the work of Gambino, Henry, Sattler and Szumilo is sufficient.)

17/19



Issues

@ It is unclear whether semisimplicial sets carry a model of full
propositional type theory (how about homotopy [-types?).

o Kapulkin & Sattler then use the right Kan extension ssSets — sSets
to get to a genuine model of homotopy type theory.

@ But since the model in simplicial sets is non-constructive, this only
gives us an ineffective form of homotopy canonicity.

e Can we use a constructive version of simplicial sets? (Unclear to me if
the work of Gambino, Henry, Sattler and Szumilo is sufficient.)

o Kapulkin & Sattler mention something about a suitable structure in
some version of cubical sets; but the details of that have never
appeared, as far as | am aware.

17/19



Issues

@ It is unclear whether semisimplicial sets carry a model of full
propositional type theory (how about homotopy [-types?).

o Kapulkin & Sattler then use the right Kan extension ssSets — sSets
to get to a genuine model of homotopy type theory.

@ But since the model in simplicial sets is non-constructive, this only
gives us an ineffective form of homotopy canonicity.

e Can we use a constructive version of simplicial sets? (Unclear to me if
the work of Gambino, Henry, Sattler and Szumilo is sufficient.)

o Kapulkin & Sattler mention something about a suitable structure in
some version of cubical sets; but the details of that have never
appeared, as far as | am aware.

@ In any case, we should switch to genuine models of propositional type
theory and see if the frames and glueing construction still works for
this genuine notion of model (say, comprehension categories with
propositional identity types as in Daniél’s talk).

17/19



Issues

In short: there is still a lot that needs to be sorted out!

18/19



Thank you!

19/19



