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Weak and Strict type theories

Trade-offs between type theories with more or less definitional equalities.

Weaker theories:

• More models.

• Type theories without any definitional equalities are cofibrant in categories of theories.

Stronger theories:

• Shorter internal proofs and constructions.

• Definitional equalities are automatically coherent.

⇝ Avoids “higher transport hell”.

Conservativity/Coherence/Strictification theorems should provide interpretations of

stronger type theories in weaker models.
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Weakenings/Strengthenings of HoTT

Weakenings of HoTT:

• Weakly computational identity types;

• Weak Tarski Universes;

• Weak/Propositional/Objective Type Theory.

Strengthenings of HoTT:

• Definitional semiring laws for N;

• Universe SProp of strict propositions (definitionally proof-irrelevant);

• Strict 1-groupoid laws for identity types;

• Universes of definitional rings, definitional categories, etc.;

• . . .
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Extensions

These extensions factor in two steps:

1. Add new constants.

+ : N → N → N,

plus0 : ∀n, n + 0 ≃ n,

plus1 : ∀n m, n + S(m) ≃ S(n +m),

plus2 : ∀n, n +m ≃ m + n,

. . .

The total type of these constants should be contractible.

2. Equational extension: Add new definitional equalities.

n + 0 = n, n + S(m) = S(n +m), n +m = m + n,

plus1 = refl, plus0 = refl, plus2 = refl, . . .
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Hofmann’s conservativity theorem

Uniqueness of Identity Proofs

p : x ≃ x

uip(p) : p ≃ refl

Equality reflection

p : x ≃ y

x = y p = refl

Intensional Type Theory has UIP (and function extensionality).

Extensional Type Theory has equality reflection.

Theorem (Hofmann)

ETT is conservative over ITT.
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Why is UIP needed ?

Assume we have in the source theory:

f : A → B,

a : A′.

such that |A| = |A′| in the target theory.

The application f (a) is well-typed in the target, but not in the source.

⇝ Translate f (a) to f (transport(p, a)) where p : A ≃U A′ is a path in the universe.

With UIP, the choice of p does not matter.

Without UIP, all choices need to be coherent.

(Even with UIP, choices matter if we choose equivalences A ∼= A′ instead of paths)
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Informal proof strategy

Given equational extension T → TE , define a factorization

T TE

TÊ

TÊ should have:

• A notion of coherent equivalence/identifications;

• Formal transports over these coherent equivalences/identifications.

Conservativity (property of T → TE ) should follow from coherence (property of TÊ ).

Coherence: any two parallel coherent equivalences/identifications are coherently identified.

⇝ Choices of coherent equivalences don’t matter.
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Categories with Families

A category with family (CwF) C has:

• Contexts/Objects: Γ ∈ C

• Substitutions/Morphisms: γ ∈ C(∆, Γ)

• Types: (Γ ⊢ A type) ∈ C, or A : C.Ty(Γ).

• Terms: (Γ ⊢ a : A) ∈ C, or a : C.Tm(Γ,A).

Structured CwFs (should) correspond to classes of 1- or ∞- categories and algebraic theories.

• Σ-CwFs ⇝ clans; (GATs)

• (Σ,Eq)-CwFs ⇝ finitely complete 1-categories; (EATs)

• (Σ, Id)-CwFs ⇝ finitely complete ∞-categories; (∞-EATs)

• (Σ,Πrep)-CwFs ⇝ representable map clans; (SOGATs)

• . . .
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Generalized Algebraic Theories

A GAT is like an algebraic theory, except that sorts can be dependent.

Example: the GAT of preorders has:

• Two sorts (the underlying set and the relation).

• Two operations (reflexivity and transitivity).

• One equation ( < is a family of propositions).

Ob : Set,

< : Ob → Ob → Set,

refl : x < x ,

trans : x < y → y < z → x < z ,

∀(f , g : x < y), f = g .
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Functorial semantics of GATs

A GAT admits a classifying Σ-CwF presented by:

• Generating types (sorts);

• Generating terms (operations);

• Equations between terms.

The GAT TPreord is the Σ-CwF generated by:

(1 ⊢ Ob type),

(x , y : Ob ⊢ x < y type),

(x : Ob ⊢ refl : x < x),

(x , y , z : Ob, p : x < y , q : y < z ⊢ trans : x < z),

(x , y : Ob, p : x < y , q : x < y ⊢ p = q).

11



Functorial semantics of GATs

A contextual model of T is a Σ-CwF morphism T → Set.

(Interpretation of the sorts and operations as families and functions)

Given M : TPreord → Set,

M(Ob) : Set,

M(Hom) : M(Ob)× M(Ob) → Set,

M(refl) : (x : M(Ob)) → M(Hom)(x , x),

. . .

A morphism between M,N : T → Set is a natural transformation M ⇒ N .

A (generalized) model of T is a category C, along with a Σ-CwF morphism T → Psh(C).

There is a (generalized) model よ : T → Psh(T ).

12



Functorial semantics of GATs

A contextual model of T is a Σ-CwF morphism T → Set.

(Interpretation of the sorts and operations as families and functions)

Given M : TPreord → Set,

M(Ob) : Set,

M(Hom) : M(Ob)× M(Ob) → Set,

M(refl) : (x : M(Ob)) → M(Hom)(x , x),

. . .

A morphism between M,N : T → Set is a natural transformation M ⇒ N .

A (generalized) model of T is a category C, along with a Σ-CwF morphism T → Psh(C).

There is a (generalized) model よ : T → Psh(T ).

12



Morphisms of GATs

Other GATs: TPoset, TCat, TMonCat, TStrMonCat, etc.

Remark: TCat has three generating sorts: Ob, Hom and EqHom!

Equality between morphisms is part of the “language of categories”, but equality between

objects is not.

GAT morphisms are morphisms between their classifying Σ-CwF.

TPreord TPoset

TCat TMonCat TStrMonCat
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Why look at the classifying Σ-CwF ?

There is a fully faithful functor

0T [−] : T → ModopT .

Its essential image consists of the finitely generated models of T .

0TCat [x : Ob, y : Ob, f : Hom(x , y)] = {x f−→ y}

Every model is equivalent to a freely generated model. (Small object argument)

Every freely generated model is a filtered colimit of finitely generated models. (T is finitary)

⇝ Looking at T gives information about all models.
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Second-order generalized algebraic theories

The difference between first-order and second-order is not important in this talk.

Second-order generalized algebraic theories also have representable sorts.

Example: most type theories are SOGATs with two sorts.

(1 ⊢ Ty type),

(A : Ty ⊢ Tm(A) typerep).

Tm(A) being representable means that we have context extensions and term variables.

Example of SOGATs: TId, TIds , TΣ, TΣ,Πrep , TITT, TETT, THoTT, etc.
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Trivial fibrations

Let F : N → M be a morphism of models of a GAT T .

Definition

The map F is a trivial fibration if for every generating sort (∂S ⊢ S type) ∈ T , we have:

Strict lifting For every (σ : ∂S) ∈ N and (x : S(F (σ))) ∈ M, there is (x0 : S(σ)) ∈ N such

that F (x0) = x .

In other words, the action of F on every sort is surjective.

Trivial fibrations in Cat are functor that are surjective objects and fully faithful.

Theorem (Hofmann’s conservativity theorem)

The morphism 0ITT → 0ETT is a trivial fibration in ModTITT
.
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Homotopy relations on a GAT

For every generating sort (∂S ⊢ S type) ∈ T ,

(σ : ∂S , x : S(σ), y : S(σ) ⊢ x ∼S(σ) y type) ∈ T ,

(σ : ∂S , x : S(σ) ⊢ hrefl : x ∼S(σ) x) ∈ T .

Example for TCat:

(x ∼Ob y) ≜ Iso(x , y),

(f ∼Hom(x,y) g) ≜ EqHom(f , g),

(p ∼EqHom(f ,g) q) ≜ 1.
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Weak equivalences

Let F : N → M be a morphism of models of T .

Definition

The map F is a weak equivalence if for every generating sort (∂S ⊢ S type) ∈ T , we have:

Weak lifting For every (σ : ∂S) ∈ N and (x : S(F (σ))) ∈ M, there is (x0 : S(σ)) ∈ N and

(p : F (x0) ∼ x) ∈ M.

In other words, the action of F on every sort is surjective up to homotopy.

Example for TCat:

• Weak lifting for Ob: the functor F is essentially surjective;

• Weak lifting for Hom: the functor F is full;

• Weak lifting for EqHom: the functor F is faithful.
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Conservativity

Assume that T1 is equipped with homotopy relations.

Definition

A morphism F : T1 → T2 of (SO)GATs is a Morita equivalence if it is a weak equivalence in

ModT1 .

Equivalently, 0T1 [Γ] → 0T2 [F (Γ)] is a weak equivalence in ModT1 for every Γ ∈ T1.

Equivalently, ηC : C → F ∗(F!(C)) for every cofibrant C ∈ ModT1 .
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Summary so far

• Focus on the classifying Σ-CwF (or (Σ,Πrep)-CwF) of (SO)GATs.

• GAT ⇝ Notion of trivial fibration.

• GAT with homotopy relations ⇝ Notion of weak equivalence (also fibrations).

For TCat: classes of maps of the canonical model structure on Cat.

For TId: classes of maps of the left semi-model structure on CwFId.

• A morphism T1 → T2 of (SO)GATs is an equivalence if it is a weak equivalence in ModT1 .
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Partial saturation
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3. Partial saturation

(Proof strategy for conservativity)

4. Strict Rezk completions

(Work in progress)
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Equational extensions

Let T be a GAT equipped with homotopy relations.

Let E be a collection of homotopies in T .

E ⊆ {(Γ, σ, x , y , p) | (Γ ⊢ p : x ∼S(σ) y) ∈ T }.

The equational extension T → TE is the extension of T by equations

x = y ,

p = hrefl (constant homotopy)

for all (Γ ⊢ p : x ∼S(σ) y) ∈ E .

Example (for TMonCat → TStrMonCat):

E = {(x , y , z : Ob ⊢ αx,y ,z : (x ⊗ (y ⊗ z)) ∼= ((x ⊗ y)⊗ z)), λ, ρ, (pentagon), (triangle)}.
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Partial saturation

Let C be a (Σ, Id)-CwF equipped with an internal model M : T → C.

We have maps

id-to-hptyS : (x ≃S(σ) y) → (x ∼S(σ) y).

Definition

We say that C is saturated (or that M is univalent) if the maps id-to-hptyS are equivalences.

A Σ-CwF morphism TCat → C is an internal category in C;
It is univalent if it is an internal univalent category in C.
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Partial saturation

Let C be a (Σ, Id)-CwF equipped with an internal model M : T → C.

We have maps

id-to-hptyS : (x ≃S(σ) y) → (x ∼S(σ) y).

Definition

We say that C is partially saturated with respect to E if we have

(Γ ⊢ p̂ : x ≃S(σ) y) ∈ C,

(Γ ⊢ p̃ : id-to-hptyS(p̂) ≃ p) ∈ C,

for every (Γ ⊢ p : x ∼S(σ) y) ∈ E .

Write T ∞
Ê

for the initial (Σ, Id)-CwF equipped with a partially saturated internal model.
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Partial saturation

Example for T = TMonCat and

E = {(x , y , z : Ob ⊢ αx,y ,z : (x ⊗ (y ⊗ z)) ∼= ((x ⊗ y)⊗ z)), λ, ρ, (pentagon), (triangle)}.

T ∞
Ê

has (weak) identity types and

α̂x,y ,z : (x ⊗ (y ⊗ z)) ≃Ob ((x ⊗ y)⊗ z)),

α̃x,y ,z : id-to-hptyOb(α̂x,y ,z) ≃ αx,y ,z ,

. . .

⇝ Identifications x ≃Ob y are approximately compositions of associators and unitors.
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Main diagram

T TE

T ∞
Ê

T 1
E

• T ∞
Ê

: CwFΣ,Id is obtained by adding identity types + partial saturation to T .

• T 1
E : CwFΣ,Eq is obtained by adding equality reflection to T ∞

E .

Or equivalently by adding equality types to TE .
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Main diagram: right map

T TE

T ∞
Ê

T 1
E

The CwF morphism L : TE → T 1
E is always bijective on terms.

This is a canonicity result for T 1
E :

Terms of T 1
E over contexts of the form L(−) compute to terms of the form L(−).

Proof can be given in the internal language of Psh(Ren(TE )).
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Main diagram: left map

T TE

T ∞
Ê

T 1
E

The CwF morphism K : T → T ∞
Ê

should be a weak equivalence in ModT , when T is

well-behaved (but independently of E ).

This is a homotopy canonicity property for T ∞
Ê

:

Terms of T ∞
Ê

over contexts K (−) compute, up to homotopy, to terms of the form K (−).

The proof should be given in the internal language of Psh∞(Ren(T )) ?

Needs ∞-groupoid structure of the components of T and T ∞
Ê

.
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Main diagram: bottom map

T TE

T ∞
Ê

T 1
E

The CwF morphism T ∞
Ê

→ T 1
E freely adds equality reflection.

This is similar to the extension from ITT to ETT.

Theorem

If T ∞
Ê

is merely 0-truncated, then T ∞
Ê

→ T 1
E is a trivial fibration.

Merely 0-truncated: for every (Γ ⊢ p : x ≃ x) ∈ T ∞
Ê

, there merely exists

(Γ ⊢ uip(p) : p ≃ refl) ∈ T ∞
Ê

. 29



Main diagram: bottom map

T TE

T ∞
Ê

T 1
E

Problem: T ∞
Ê

is almost never 0-truncated.

(Consider (x : A, p : x ≃ x ⊢ p : x ≃ x) ∈ T ∞
Ê

.)

Solution: 0-truncation over the image of K is enough.

Merely 0-truncated relatively to K : for every (K (Γ) ⊢ p : x ≃ x) ∈ T ∞
Ê

, there merely exists

(K (Γ) ⊢ uip(p) : p ≃ refl) ∈ T ∞
Ê

.
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Main diagram: factorization

T TE

TÊ

T ∞
Ê

T 1
E

∼

Consider factorization T → TÊ → T ∞
Ê

. (in some orthogonal FS)

The CwF TÊ is the restriction of T ∞
Ê

to contexts/types that do not contain identity types.

The map TÊ → T ∞
Ê

is bijective on terms.

Solution to lifting problem gives TÊ → TE .

Replaces bottom and right maps.

Theorem

If T ∞
Ê

is merely 0-truncated relatively to K, then TÊ → TE is a trivial fibration.
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0-truncatedness from normalization

0-truncatedness follows from homotopy normalization results:

Interpret element x : A as a path JxK : x ≃ norm(x).

Interpret path p : x ≃ y as a dependent path JpK : JxK ≃ JyK over p.

When p : x ≃ x , JpK implies that p ≃ refl.

x x

norm(x)

p

JxK

JpK
JxK

Strict normalization proof for TE takes place in Psh(Ren(TE )).

Homotopy normalization proof for T ∞
Ê

should take place in Psh∞(Ren(TÊ ))!

Needs the ∞-groupoid structure of the components of T ∞
Ê

!
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Summary

Factorization:
T TE

TÊ

T ∞
Ê

∼

• T → T ∞
Ê

being a weak equivalence is homotopy canonicity for T ∞
Ê

.

• TÊ → TE being a trivial fibration follows from homotopy normalization for T ∞
Ê

.

How do we prove homotopy canonicity/normalization for T ∞
Ê

?
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Strict Rezk completions
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Strict canonicity

Strict canonicity for e.g. MLTT can be proven using logical predicates:

Interpret A : S.Ty(1) as a family JAK : S.Tm(1,A) → Set.

Interpret a : S.Tm(1,A) as an element JaK : JAK(a).

For specific types, an element of JAK(a) proves that a is canonical.

e.g. JBoolK(b) := (b = true) + (b = false).

(Sconing/gluing constructions construct models from this data.)

JAK is a set-valued logical predicate.

35



Strict canonicity

Strict canonicity for e.g. MLTT can be proven using logical predicates:

Interpret A : S.Ty(1) as a family JAK : S.Tm(1,A) → Set.

Interpret a : S.Tm(1,A) as an element JaK : JAK(a).

For specific types, an element of JAK(a) proves that a is canonical.

e.g. JBoolK(b) := (b = true) + (b = false).

(Sconing/gluing constructions construct models from this data.)

JAK is a set-valued logical predicate.

35



Homotopy canonicity

Now assume that S is a CwF with identity types + univalence/saturation/partial saturation.

JAK : S.Tm(1,A) → Set should be replaced by JAK : S.Tm(1,A) → ∞Grp.

Problem: S.Tm(1,A) is a set, not an ∞-groupoid.

⇝ We need to replace S.Tm(1,A) by an ∞-groupoid S.Tm(1,A).

⇝ We need to replace all components of S by ∞-groupoids/∞-functors. This should be

compatible with the strict substitution of S.

Solution ? S should be the “strict Rezk completion” of S in cartesian cubical sets.

If C is a category in HoTT, its Rezk completion C has the correct ∞-groupoid of objects.

A strict Rezk completion S (if it exists) would have the correct ∞-groupoids of types/terms.

⇝ Interpret A by JAK : S.Tm(1,A) → SetKan in cSet.
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Conclusion

• Conservativity problems can be stated for morphisms of generalized algebraic theories.

• Instead of looking at all models, we can look at the classifying CwF of a theory.

• Conservativity should follow from homotopy canonicity and homotopy normalization.

T TE

TÊ

T ∞
Ê

∼

https://arxiv.org/abs/2304.10343
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Strict Rezk completion of preorders

Let X be a strict preorder. Define a strict preorder X , freely generated by:

i : X → X ,

GlueOb : (x : X )(α : Cof)((y , e) : [α] → Σy (x ∼= y)) → {X | α ↪→ y},
glueOb : (x : X )(α : Cof)((y , e) : [α] → Σy (x ∼= y)) → {x ∼= GlueOb(x , (y , e)) | α ↪→ e},
GlueHom : (f : x <X y)(α : Cof)(g : [α] → x <X y) → {x <X y | α ↪→ g}.

Theorem

If X is cofibrant in Preord and its components are fibrant (Kan), then the preorder X is a

strict Rezk completion of X .

(The hard part is the fibrancy of X )
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