
PSSL 109
Leiden University & DutchCats

the 17th of November 2024

Higher dimensional semantics
of axiomatic dependent type theories

Matteo Spadetto
University of Udine



Theories of dependent types

Theories that can make:

▶ type judgements, A : Type (possibly releative to a context of variables,
Γ ⊢ A : Type), read as A is a statement

▶ term judgements, t : A, read as t is a proof of the statement A

▶ type equality judgements, A ≡ B

▶ term equality judgements, t ≡ t′ : A

Type constructors. Groups of deduction rules that encode pieces of logic.

E.g.
identity type constructor, t = t′, for a notion of equality
dependent sum type constructor, Σx:AB(x), for a notion of existential quantification
(that we will focus on today)



Theories of dependent types

Theories that can make:

▶ type judgements, A : Type (possibly releative to a context of variables,
Γ ⊢ A : Type), read as A is a statement

▶ term judgements, t : A, read as t is a proof of the statement A

▶ type equality judgements, A ≡ B

▶ term equality judgements, t ≡ t′ : A

Type constructors. Groups of deduction rules that encode pieces of logic.

E.g.
identity type constructor, t = t′, for a notion of equality
dependent sum type constructor, Σx:AB(x), for a notion of existential quantification
(that we will focus on today)



Theories of dependent types

Theories that can make:

▶ type judgements, A : Type (possibly releative to a context of variables,
Γ ⊢ A : Type), read as A is a statement

▶ term judgements, t : A, read as t is a proof of the statement A

▶ type equality judgements, A ≡ B

▶ term equality judgements, t ≡ t′ : A

Type constructors. Groups of deduction rules that encode pieces of logic.

E.g.
identity type constructor, t = t′, for a notion of equality
dependent sum type constructor, Σx:AB(x), for a notion of existential quantification
(that we will focus on today)



Theories of dependent types

Theories that can make:

▶ type judgements, A : Type (possibly releative to a context of variables,
Γ ⊢ A : Type), read as A is a statement

▶ term judgements, t : A, read as t is a proof of the statement A

▶ type equality judgements, A ≡ B

▶ term equality judgements, t ≡ t′ : A

Type constructors. Groups of deduction rules that encode pieces of logic.

E.g.
identity type constructor, t = t′, for a notion of equality
dependent sum type constructor, Σx:AB(x), for a notion of existential quantification
(that we will focus on today)



Theories of dependent types

Theories that can make:

▶ type judgements, A : Type (possibly releative to a context of variables,
Γ ⊢ A : Type), read as A is a statement

▶ term judgements, t : A, read as t is a proof of the statement A

▶ type equality judgements, A ≡ B

▶ term equality judgements, t ≡ t′ : A

Type constructors. Groups of deduction rules that encode pieces of logic.

E.g.
identity type constructor, t = t′, for a notion of equality
dependent sum type constructor, Σx:AB(x), for a notion of existential quantification
(that we will focus on today)



Theories of dependent types

Theories that can make:

▶ type judgements, A : Type (possibly releative to a context of variables,
Γ ⊢ A : Type), read as A is a statement

▶ term judgements, t : A, read as t is a proof of the statement A

▶ type equality judgements, A ≡ B

▶ term equality judgements, t ≡ t′ : A

Type constructors. Groups of deduction rules that encode pieces of logic.

E.g.
identity type constructor, t = t′, for a notion of equality
dependent sum type constructor, Σx:AB(x), for a notion of existential quantification
(that we will focus on today)



Semantics of these theories

Semantics consists of category theoretic copies - formulated e.g. as display map
categories - of a given theory, that encode as morphisms and properties between
morphisms these type constructors.

There are essentially two approaches:
▶ a syntactic approach, encoding type constructors in alignment with the syntax
▶ a categorical approach, characterising type constructors categorically

The syntactic formulation can be used to prove things of the theory, while the categorical
one to find specific models that can be used to disprove things of the theory.



Semantics of these theories

Semantics consists of category theoretic copies - formulated e.g. as display map
categories - of a given theory, that encode as morphisms and properties between
morphisms these type constructors.

There are essentially two approaches:
▶ a syntactic approach, encoding type constructors in alignment with the syntax
▶ a categorical approach, characterising type constructors categorically

The syntactic formulation can be used to prove things of the theory, while the categorical
one to find specific models that can be used to disprove things of the theory.



Semantics of these theories

Semantics consists of category theoretic copies - formulated e.g. as display map
categories - of a given theory, that encode as morphisms and properties between
morphisms these type constructors.

There are essentially two approaches:
▶ a syntactic approach, encoding type constructors in alignment with the syntax
▶ a categorical approach, characterising type constructors categorically

The syntactic formulation can be used to prove things of the theory, while the categorical
one to find specific models that can be used to disprove things of the theory.



Extensional theories (where identity proofs are irrelevant)

Extensional identity types

⊢ A : Type
x, x′ : A ⊢ x = x′ : Type

x : A ⊢ r(x) : x = x

⊢ A : Type
x, x′ : A, p : x = x′ ⊢ x ≡ x′

x, x′ : A, p : x = x′ ⊢ p ≡ r(x)

Dependent sum types

⊢ A : Type
x : A ⊢ B(x) : Type
⊢ Σx:AB(x) : Type

x : A, y : B(x) ⊢ ⟨x, y⟩ : Σx:AB(x)

⊢ A : Type
x : A ⊢ B(x) : Type

u : Σx:AB(x) ⊢ C(u) : Type
x : A; y : B(x) ⊢ c(x, y) : C(⟨x, y⟩)
u : Σx:AB(x) ⊢ split(c, u) : C(u)

x : A; y : B(x) ⊢ split(c, ⟨x, y⟩) ≡ c(x, y)



Intensional theories (with computation rules)

Intensional identity types

⊢ A : Type
x, x′ : A ⊢ x = x′ : Type

x : A ⊢ r(x) : x = x

⊢ A : Type
x, x′ : A; p : x = x′ ⊢ C(x, x′, p) : Type

x : A ⊢ q(x) : C(x, x, r(x))

x, x′ : A; p : x = x′ ⊢ J(q, x, x′, p) : C(x, x′, p)
x : A ⊢ J(q, x, x, r(x)) ≡ q(x)

Dependent sum types

⊢ A : Type
x : A ⊢ B(x) : Type
⊢ Σx:AB(x) : Type

x : A, y : B(x) ⊢ ⟨x, y⟩ : Σx:AB(x)

⊢ A : Type
x : A ⊢ B(x) : Type

u : Σx:AB(x) ⊢ C(u) : Type
x : A; y : B(x) ⊢ c(x, y) : C(⟨x, y⟩)
u : Σx:AB(x) ⊢ split(c, u) : C(u)

x : A; y : B(x) ⊢ split(c, ⟨x, y⟩) ≡ c(x, y)



Axiomatic theories1 (with computation axioms)

Axiomatic identity types

⊢ A : Type
x, x′ : A ⊢ x = x′ : Type

x : A ⊢ r(x) : x = x

⊢ A : Type
x, x′ : A; p : x = x′ ⊢ C(x, x′, p) : Type

x : A ⊢ q(x) : C(x, x, r(x))

x, x′ : A; p : x = x′ ⊢ J(q, x, x′, p) : C(x, x′, p)
x : A ⊢ J(q, x, x, r(x)) ̸≡ q(x)

Axiomatic dependent sum types

⊢ A : Type
x : A ⊢ B(x) : Type
⊢ Σx:AB(x) : Type

x : A, y : B(x) ⊢ ⟨x, y⟩ : Σx:AB(x)

⊢ A : Type
x : A ⊢ B(x) : Type

u : Σx:AB(x) ⊢ C(u) : Type
x : A; y : B(x) ⊢ c(x, y) : C(⟨x, y⟩)
u : Σx:AB(x) ⊢ split(c, u) : C(u)

x : A; y : B(x) ⊢ split(c, ⟨x, y⟩) ̸≡ c(x, y)

1Also known as weak, objective, propositional theories.



Axiomatic theories (with computation axioms)

Axiomatic identity types

⊢ A : Type
x, x′ : A ⊢ x = x′ : Type

x : A ⊢ r(x) : x = x

⊢ A : Type
x, x′ : A; p : x = x′ ⊢ C(x, x′, p) : Type

x : A ⊢ q(x) : C(x, x, r(x))

x, x′ : A; p : x = x′ ⊢ J(q, x, x′, p) : C(x, x′, p)
x : A ⊢ H(q, x) : J(q, x, x, r(x)) = q(x)

Axiomatic dependent sum types

⊢ A : Type
x : A ⊢ B(x) : Type
⊢ Σx:AB(x) : Type

x : A, y : B(x) ⊢ ⟨x, y⟩ : Σx:AB(x)

⊢ A : Type
x : A ⊢ B(x) : Type

u : Σx:AB(x) ⊢ C(u) : Type
x : A; y : B(x) ⊢ c(x, y) : C(⟨x, y⟩)
u : Σx:AB(x) ⊢ split(c, u) : C(u)

x : A; y : B(x) ⊢ σ(c, x, y) : split(c, ⟨x, y⟩) = c(x, y)



How semantics works

In a display map category we are given a family of display maps (notion introduced by
Paul Taylor), denoted as Γ.A → Γ that interpret type judgements Γ ⊢ A : Type. Term
judgements Γ ⊢ t : A are interpreted as sections Γ → Γ.A of the corresponding display
map.

To have a model of a type constructor:

▶ In the syntactic approach one copies the type constructor into a display map
category by means of a choice function in the language of the display map category.
Example:
▶ Extensional identity types. For every display map Γ.A → Γ there is a choice of a

display map Γ.A.A′.(x = x′) → Γ.A.A (formation rule) together with a choice of a
section Γ.A → Γ.A.(x = x) of Γ.A.(x = x) → Γ.A (introduction rule), etc..

▶ Dependent sum types (in presence of extensional identities). Analogously.

▶ In the category theoretic approach one looks for a 1-dimensional categorical
property to give to display maps that characterises the type constructor, allowing a
choice function as in the syntactic approach to be induced by this property.
Example:
▶ Extensional identity types. For every display map Γ.A → Γ, the unique diagonal

arrow Γ.A → Γ.A.A′ is itself a display map.
▶ Dependent sum types (in presence of extensional identities). Up to isomorphism,

display maps are closed under composition.

Way easier to formulate!



How semantics works

In a display map category we are given a family of display maps (notion introduced by
Paul Taylor), denoted as Γ.A → Γ that interpret type judgements Γ ⊢ A : Type. Term
judgements Γ ⊢ t : A are interpreted as sections Γ → Γ.A of the corresponding display
map.

To have a model of a type constructor:

▶ In the syntactic approach one copies the type constructor into a display map
category by means of a choice function in the language of the display map category.

Example:
▶ Extensional identity types. For every display map Γ.A → Γ there is a choice of a

display map Γ.A.A′.(x = x′) → Γ.A.A (formation rule) together with a choice of a
section Γ.A → Γ.A.(x = x) of Γ.A.(x = x) → Γ.A (introduction rule), etc..

▶ Dependent sum types (in presence of extensional identities). Analogously.

▶ In the category theoretic approach one looks for a 1-dimensional categorical
property to give to display maps that characterises the type constructor, allowing a
choice function as in the syntactic approach to be induced by this property.
Example:
▶ Extensional identity types. For every display map Γ.A → Γ, the unique diagonal

arrow Γ.A → Γ.A.A′ is itself a display map.
▶ Dependent sum types (in presence of extensional identities). Up to isomorphism,

display maps are closed under composition.

Way easier to formulate!



How semantics works

In a display map category we are given a family of display maps (notion introduced by
Paul Taylor), denoted as Γ.A → Γ that interpret type judgements Γ ⊢ A : Type. Term
judgements Γ ⊢ t : A are interpreted as sections Γ → Γ.A of the corresponding display
map.

To have a model of a type constructor:

▶ In the syntactic approach one copies the type constructor into a display map
category by means of a choice function in the language of the display map category.
Example:
▶ Extensional identity types. For every display map Γ.A → Γ there is a choice of a

display map Γ.A.A′.(x = x′) → Γ.A.A (formation rule) together with a choice of a
section Γ.A → Γ.A.(x = x) of Γ.A.(x = x) → Γ.A (introduction rule), etc..

▶ Dependent sum types (in presence of extensional identities). Analogously.

▶ In the category theoretic approach one looks for a 1-dimensional categorical
property to give to display maps that characterises the type constructor, allowing a
choice function as in the syntactic approach to be induced by this property.
Example:
▶ Extensional identity types. For every display map Γ.A → Γ, the unique diagonal

arrow Γ.A → Γ.A.A′ is itself a display map.
▶ Dependent sum types (in presence of extensional identities). Up to isomorphism,

display maps are closed under composition.

Way easier to formulate!



How semantics works

In a display map category we are given a family of display maps (notion introduced by
Paul Taylor), denoted as Γ.A → Γ that interpret type judgements Γ ⊢ A : Type. Term
judgements Γ ⊢ t : A are interpreted as sections Γ → Γ.A of the corresponding display
map.

To have a model of a type constructor:

▶ In the syntactic approach one copies the type constructor into a display map
category by means of a choice function in the language of the display map category.
Example:
▶ Extensional identity types. For every display map Γ.A → Γ there is a choice of a

display map Γ.A.A′.(x = x′) → Γ.A.A (formation rule) together with a choice of a
section Γ.A → Γ.A.(x = x) of Γ.A.(x = x) → Γ.A (introduction rule), etc..

▶ Dependent sum types (in presence of extensional identities). Analogously.

▶ In the category theoretic approach one looks for a 1-dimensional categorical
property to give to display maps that characterises the type constructor, allowing a
choice function as in the syntactic approach to be induced by this property.

Example:
▶ Extensional identity types. For every display map Γ.A → Γ, the unique diagonal

arrow Γ.A → Γ.A.A′ is itself a display map.
▶ Dependent sum types (in presence of extensional identities). Up to isomorphism,

display maps are closed under composition.

Way easier to formulate!



How semantics works

In a display map category we are given a family of display maps (notion introduced by
Paul Taylor), denoted as Γ.A → Γ that interpret type judgements Γ ⊢ A : Type. Term
judgements Γ ⊢ t : A are interpreted as sections Γ → Γ.A of the corresponding display
map.

To have a model of a type constructor:

▶ In the syntactic approach one copies the type constructor into a display map
category by means of a choice function in the language of the display map category.
Example:
▶ Extensional identity types. For every display map Γ.A → Γ there is a choice of a

display map Γ.A.A′.(x = x′) → Γ.A.A (formation rule) together with a choice of a
section Γ.A → Γ.A.(x = x) of Γ.A.(x = x) → Γ.A (introduction rule), etc..

▶ Dependent sum types (in presence of extensional identities). Analogously.

▶ In the category theoretic approach one looks for a 1-dimensional categorical
property to give to display maps that characterises the type constructor, allowing a
choice function as in the syntactic approach to be induced by this property.
Example:
▶ Extensional identity types. For every display map Γ.A → Γ, the unique diagonal

arrow Γ.A → Γ.A.A′ is itself a display map.
▶ Dependent sum types (in presence of extensional identities). Up to isomorphism,

display maps are closed under composition.

Way easier to formulate!



How semantics works

In a display map category we are given a family of display maps (notion introduced by
Paul Taylor), denoted as Γ.A → Γ that interpret type judgements Γ ⊢ A : Type. Term
judgements Γ ⊢ t : A are interpreted as sections Γ → Γ.A of the corresponding display
map.

To have a model of a type constructor:

▶ In the syntactic approach one copies the type constructor into a display map
category by means of a choice function in the language of the display map category.
Example:
▶ Extensional identity types. For every display map Γ.A → Γ there is a choice of a

display map Γ.A.A′.(x = x′) → Γ.A.A (formation rule) together with a choice of a
section Γ.A → Γ.A.(x = x) of Γ.A.(x = x) → Γ.A (introduction rule), etc..

▶ Dependent sum types (in presence of extensional identities). Analogously.

▶ In the category theoretic approach one looks for a 1-dimensional categorical
property to give to display maps that characterises the type constructor, allowing a
choice function as in the syntactic approach to be induced by this property.
Example:
▶ Extensional identity types. For every display map Γ.A → Γ, the unique diagonal

arrow Γ.A → Γ.A.A′ is itself a display map.
▶ Dependent sum types (in presence of extensional identities). Up to isomorphism,

display maps are closed under composition.

Way easier to formulate!



How semantics works

For extensional dependent type theories, the categorical approach is clear and
conceptually simple to formulate.

This is not the case for intensional, and axiomatic, dependent type theories: there
aren’t obvious categorical properties to characterise intensional and axiomatic inference
rules.

Garner’s approach: in order to characterise intensional type constructors, we can use
2-dimensional models, that still can be converted into ordinary models according to the
syntactic approach, and 2-dimensional - e.g. weakly universal - categorical properties.

This approach can also be used for axiomatic theories.

Goal. Having a 2-dimensional structure with natural categorical conditions that allow to
interpret axiomatic theories.



How semantics works

For extensional dependent type theories, the categorical approach is clear and
conceptually simple to formulate.

This is not the case for intensional, and axiomatic, dependent type theories: there
aren’t obvious categorical properties to characterise intensional and axiomatic inference
rules.

Garner’s approach: in order to characterise intensional type constructors, we can use
2-dimensional models, that still can be converted into ordinary models according to the
syntactic approach, and 2-dimensional - e.g. weakly universal - categorical properties.

This approach can also be used for axiomatic theories.

Goal. Having a 2-dimensional structure with natural categorical conditions that allow to
interpret axiomatic theories.



How semantics works

For extensional dependent type theories, the categorical approach is clear and
conceptually simple to formulate.

This is not the case for intensional, and axiomatic, dependent type theories: there
aren’t obvious categorical properties to characterise intensional and axiomatic inference
rules.

Garner’s approach: in order to characterise intensional type constructors, we can use
2-dimensional models, that still can be converted into ordinary models according to the
syntactic approach, and 2-dimensional - e.g. weakly universal - categorical properties.

This approach can also be used for axiomatic theories.

Goal. Having a 2-dimensional structure with natural categorical conditions that allow to
interpret axiomatic theories.



2-dimensional semantics of axiomatic theories
Display map 2-categories. (2,1)-dimensional categories with a specified class of
1-morphisms, called display maps, that satisfy the following conditions:

1. The class of display maps is closed under 2-dimensional re-indexing.

Γ.A ⇒ ∆.A[f ] Γ.A

∆ Γ ∆ Γ
⌟

f f

2. Every display map is a cloven isofibration.

∆ Γ.A ∆ Γ.A

=

Γ Γ

3. Every display map has an arrow object.

Ω Γ.A s.t. homΓ(∆,Ω) Γ.A.A′.(x = x′)

Γ homΓ(∆,Γ.A)→ Ω

∼= :=

4. The class of display maps is closed under composition, up to homotopy equiv..

Γ.A.B ⇒ Γ.A.B Γ.C ΣB
A

Γ.A Γ Γ.A Γ C

≃ :=



2-dimensional semantics of axiomatic theories
Display map 2-categories. (2,1)-dimensional categories with a specified class of
1-morphisms, called display maps, that satisfy the following conditions:

1. The class of display maps is closed under 2-dimensional re-indexing.

Γ.A ⇒ ∆.A[f ] Γ.A

∆ Γ ∆ Γ
⌟

f f

2. Every display map is a cloven isofibration.

∆ Γ.A ∆ Γ.A

=

Γ Γ

3. Every display map has an arrow object.

Ω Γ.A s.t. homΓ(∆,Ω) Γ.A.A′.(x = x′)

Γ homΓ(∆,Γ.A)→ Ω

∼= :=

4. The class of display maps is closed under composition, up to homotopy equiv..

Γ.A.B ⇒ Γ.A.B Γ.C ΣB
A

Γ.A Γ Γ.A Γ C

≃ :=



2-dimensional semantics of axiomatic theories
Display map 2-categories. (2,1)-dimensional categories with a specified class of
1-morphisms, called display maps, that satisfy the following conditions:

1. The class of display maps is closed under 2-dimensional re-indexing.

Γ.A ⇒ ∆.A[f ] Γ.A

∆ Γ ∆ Γ
⌟

f f

2. Every display map is a cloven isofibration.

∆ Γ.A ∆ Γ.A

=

Γ Γ

3. Every display map has an arrow object.

Ω Γ.A s.t. homΓ(∆,Ω) Γ.A.A′.(x = x′)

Γ homΓ(∆,Γ.A)→ Ω

∼= :=

4. The class of display maps is closed under composition, up to homotopy equiv..

Γ.A.B ⇒ Γ.A.B Γ.C ΣB
A

Γ.A Γ Γ.A Γ C

≃ :=



2-dimensional semantics of axiomatic theories
Display map 2-categories. (2,1)-dimensional categories with a specified class of
1-morphisms, called display maps, that satisfy the following conditions:

1. The class of display maps is closed under 2-dimensional re-indexing.

Γ.A ⇒ ∆.A[f ] Γ.A

∆ Γ ∆ Γ
⌟

f f

2. Every display map is a cloven isofibration.

∆ Γ.A ∆ Γ.A

=

Γ Γ

3. Every display map has an arrow object.

Ω Γ.A s.t. homΓ(∆,Ω) Γ.A.A′.(x = x′)

Γ homΓ(∆,Γ.A)→ Ω

∼= :=

4. The class of display maps is closed under composition, up to homotopy equiv..

Γ.A.B ⇒ Γ.A.B Γ.C ΣB
A

Γ.A Γ Γ.A Γ C

≃ :=



2-dimensional semantics of axiomatic theories
Display map 2-categories. (2,1)-dimensional categories with a specified class of
1-morphisms, called display maps, that satisfy the following conditions:

1. The class of display maps is closed under 2-dimensional re-indexing.

Γ.A ⇒ ∆.A[f ] Γ.A

∆ Γ ∆ Γ
⌟

f f

2. Every display map is a cloven isofibration.

∆ Γ.A ∆ Γ.A

=

Γ Γ

3. Every display map has an arrow object.

Ω Γ.A s.t. homΓ(∆,Ω) Γ.A.A′.(x = x′)

Γ homΓ(∆,Γ.A)→ Ω

∼= :=

4. The class of display maps is closed under composition, up to homotopy equiv..

Γ.A.B ⇒ Γ.A.B Γ.C ΣB
A

Γ.A Γ Γ.A Γ C

≃ :=



2-dimensional semantics of axiomatic theories
Display map 2-categories. (2,1)-dimensional categories with a specified class of
1-morphisms, called display maps, that satisfy the following conditions:

1. To substitute into types and terms.

Γ.A ⇒ ∆.A[f ] Γ.A

∆ Γ ∆ Γ
⌟

f f

2. Every display map is a cloven isofibration.

∆ Γ.A ∆ Γ.A

=

Γ Γ

3. Every display map has an arrow object.

Ω Γ.A s.t. homΓ(∆,Ω) Γ.A.A′.(x = x′)

Γ homΓ(∆,Γ.A)→ Ω

∼= :=

4. The class of display maps is closed under composition, up to homotopy equiv..

Γ.A.B ⇒ Γ.A.B Γ.C ΣB
A

Γ.A Γ Γ.A Γ C

≃ :=



2-dimensional semantics of axiomatic theories
Display map 2-categories. (2,1)-dimensional categories with a specified class of
1-morphisms, called display maps, that satisfy the following conditions:

1. To substitute into types and terms.

Γ.A ⇒ ∆.A[f ] Γ.A

∆ Γ ∆ Γ
⌟

f f

2. Every display map is a cloven isofibration.

∆ Γ.A ∆ Γ.A

=

Γ Γ

3. To have identity types with pseudo-elimination.

Ω Γ.A s.t. homΓ(∆,Ω) Γ.A.A′.(x = x′)

Γ homΓ(∆,Γ.A)→ Ω

∼= :=

4. The class of display maps is closed under composition, up to homotopy equiv..

Γ.A.B ⇒ Γ.A.B Γ.C ΣB
A

Γ.A Γ Γ.A Γ C

≃ :=



2-dimensional semantics of axiomatic theories
Display map 2-categories. (2,1)-dimensional categories with a specified class of
1-morphisms, called display maps, that satisfy the following conditions:

1. To substitute into types and terms.

Γ.A ⇒ ∆.A[f ] Γ.A

∆ Γ ∆ Γ
⌟

f f

2. Every display map is a cloven isofibration.

∆ Γ.A ∆ Γ.A

=

Γ Γ

3. To have identity types with pseudo-elimination.

Ω Γ.A s.t. homΓ(∆,Ω) Γ.A.A′.(x = x′)

Γ homΓ(∆,Γ.A)→ Ω

∼= :=

4. To have dependent sum types with pseudo-elimination.

Γ.A.B ⇒ Γ.A.B Γ.C ΣB
A

Γ.A Γ Γ.A Γ C

≃ :=



2-dimensional semantics of axiomatic theories
Display map 2-categories. (2,1)-dimensional categories with a specified class of
1-morphisms, called display maps, that satisfy the following conditions:

1. To substitute into types and terms.

Γ.A ⇒ ∆.A[f ] Γ.A

∆ Γ ∆ Γ
⌟

f f

2. To strictify eliminations in 3-4 in change of producing computation axioms.

∆ Γ.A ∆ Γ.A

=

Γ Γ

3. To have identity types with pseudo-elimination.

Ω Γ.A s.t. homΓ(∆,Ω) Γ.A.A′.(x = x′)

Γ homΓ(∆,Γ.A)→ Ω

∼= :=

4. To have dependent sum types with pseudo-elimination.

Γ.A.B ⇒ Γ.A.B Γ.C ΣB
A

Γ.A Γ Γ.A Γ C

≃ :=



2-dimensional semantics of axiomatic theories

Main theorem. Display map 2-categories are models of axiomatic dependent type
theory.

An application:

Theorem. The judgemental computation rule for intensional identity type constructor is
independent of the axiomatic dependent type theory.

Proof i.e. a revisitation of the groupoid model.
We consider the (2,1)-category GRPD of groupoids, functors, and natural transformations
(i.e. natural isomorphisms) with Grothendieck constructions of pseudofunctors
Γ → GRPD as display maps over Γ.
The model of axiomatic theory induced by this display map 2-category does not believe
the judgemental computation rule, so the statement follows by soundness.



2-dimensional semantics of axiomatic theories

Main theorem. Display map 2-categories are models of axiomatic dependent type
theory.

An application:

Theorem. The judgemental computation rule for intensional identity type constructor is
independent of the axiomatic dependent type theory.

Proof

i.e. a revisitation of the groupoid model.
We consider the (2,1)-category GRPD of groupoids, functors, and natural transformations
(i.e. natural isomorphisms) with Grothendieck constructions of pseudofunctors
Γ → GRPD as display maps over Γ.
The model of axiomatic theory induced by this display map 2-category does not believe
the judgemental computation rule, so the statement follows by soundness.



2-dimensional semantics of axiomatic theories

Main theorem. Display map 2-categories are models of axiomatic dependent type
theory.

An application:

Theorem. The judgemental computation rule for intensional identity type constructor is
independent of the axiomatic dependent type theory.

Proof i.e. a revisitation of the groupoid model.
We consider the (2,1)-category GRPD of groupoids, functors, and natural transformations
(i.e. natural isomorphisms) with Grothendieck constructions of pseudofunctors
Γ → GRPD as display maps over Γ.

The model of axiomatic theory induced by this display map 2-category does not believe
the judgemental computation rule, so the statement follows by soundness.



2-dimensional semantics of axiomatic theories

Main theorem. Display map 2-categories are models of axiomatic dependent type
theory.

An application:

Theorem. The judgemental computation rule for intensional identity type constructor is
independent of the axiomatic dependent type theory.

Proof i.e. a revisitation of the groupoid model.
We consider the (2,1)-category GRPD of groupoids, functors, and natural transformations
(i.e. natural isomorphisms) with Grothendieck constructions of pseudofunctors
Γ → GRPD as display maps over Γ.
The model of axiomatic theory induced by this display map 2-category does not believe
the judgemental computation rule, so the statement follows by soundness.



Do we obtain every model?

No, because every such display map 2-category believes the following rule:

Discreteness
⊢ A : Type

x, y : A; p, q : x = y; α : p = q ⊢ p ≡ q

Theorem. The display map 2-categories are precisely the models (as in the syntactic
formulation) of the axiomatic theory extended with the discreteness rule.
Therefore, this notion of semantics is sound w.r.t. the axiomatic theory of dependent
types, and it is sound and complete w.r.t. the axiomatic theory of dependent types
extended with the discreteness rule.



Do we obtain every model?

No,

because every such display map 2-category believes the following rule:

Discreteness
⊢ A : Type

x, y : A; p, q : x = y; α : p = q ⊢ p ≡ q

Theorem. The display map 2-categories are precisely the models (as in the syntactic
formulation) of the axiomatic theory extended with the discreteness rule.
Therefore, this notion of semantics is sound w.r.t. the axiomatic theory of dependent
types, and it is sound and complete w.r.t. the axiomatic theory of dependent types
extended with the discreteness rule.



Do we obtain every model?

No, because every such display map 2-category believes the following rule:

Discreteness
⊢ A : Type

x, y : A; p, q : x = y; α : p = q ⊢ p ≡ q

Theorem. The display map 2-categories are precisely the models (as in the syntactic
formulation) of the axiomatic theory extended with the discreteness rule.
Therefore, this notion of semantics is sound w.r.t. the axiomatic theory of dependent
types, and it is sound and complete w.r.t. the axiomatic theory of dependent types
extended with the discreteness rule.



Do we obtain every model?

No, because every such display map 2-category believes the following rule:

Discreteness
⊢ A : Type

x, y : A; p, q : x = y; α : p = q ⊢ p ≡ q

Theorem. The display map 2-categories are precisely the models (as in the syntactic
formulation) of the axiomatic theory extended with the discreteness rule.

Therefore, this notion of semantics is sound w.r.t. the axiomatic theory of dependent
types, and it is sound and complete w.r.t. the axiomatic theory of dependent types
extended with the discreteness rule.



Do we obtain every model?

No, because every such display map 2-category believes the following rule:

Discreteness
⊢ A : Type

x, y : A; p, q : x = y; α : p = q ⊢ p ≡ q

Theorem. The display map 2-categories are precisely the models (as in the syntactic
formulation) of the axiomatic theory extended with the discreteness rule.
Therefore, this notion of semantics is sound w.r.t. the axiomatic theory of dependent
types, and it is sound and complete w.r.t. the axiomatic theory of dependent types
extended with the discreteness rule.


