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Arboreal categories and model comparison games

A reformulation of an old example (2/2)

Let (M, <y) and (N, <y) be dense linear orders without end points.
(e.0. (Q, <) and (R, <))

Ehrenfeucht-Fraissé game (played by Spoiler and Duplicator)
(x | ©)
or symmetrically.
oo < X ‘ PN upiisaton” Y

» Duplicator wins since they can always respond.

Corollary (..., Karp (1965))

(M, <y) and (N, <y) are equivalent in L(<).

Formulation inspired from Abramsky & Shah (2018, 2021).
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Toward game comonads
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Game comonads: turn plays into structures

Ehrenfeucht-Fraissé games

» Play projected on M is an element of a structure Rgr(M) with
carrier M*.

Abramsky, Dawar & Wang (2017), Abramsky & Shah (2018, 2021), Abrasmky &
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Ehrenfeucht-Fraissé games

» Play projected on M is an element of a structure Rgr(M) with
carrier M*.

Other examples
> Pebble games.
» Modal fragment, Hybrid fragment, Guarded fragments, ...

Adjunctions
» The R(M) are structures with a L
tree order. P ﬂruct(a)
> |n each case, R is a right adjoint. N
» Comonads on Struct(o). R

Abramsky, Dawar & Wang (2017), Abramsky & Shah (2018, 2021), Abrasmky &
Marsden (2021, 2022). ..
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Arboreal categories and model comparison games

Arboreal categories

Abramsky & Reggio (2021, 2023).
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Arboreal categories: motivations

L

TN
A 1 Struct(o)

\/

R
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Arboreal categories and model comparison games

Arboreal categories: motivations

L

TN
A 1 Struct(o)

\_/

R

Conditions on A which yield well-behaved games.

Abramsky & Reggio (2021, 2023).
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Arboreal categories: main ideas
Arboreal category A.
» Factorization system (Q, M) on A:
each morphism f factors as (e€ 9, meM)

o v

» Typically, the “embeddings” m € M are embeddings of structures
which are tree morphisms.

> P e Ais a path when its M-subobjects form a finite chain

~

P

S1>—>52>—>--->—>Sn

» Induced functor A — Tree.
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Back-and-forth game (X, Y). (X,Y € A)
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Arboreal categories: back-and-forth equivalence

Back-and-forth game S(X, Y). (X,Y €A
» Positions are spans of “embeddings” (P path)
» Moves: (played by Spoiler and Duplicator)

P
/ A \ or symmetrically.
X ———< Qroc » Y
(Spoiler) (Duplicator)

» Duplicator wins if they can always respond.

Definition

X,Y € A are back-and-forth equivalent if Duplicator wins §(X, Y).

» Bisimulation via open maps. (Joyal, Nielsen, Winskel)

Abramsky & Reggio (2021, 2023).
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Example (Ehrenfeucht-Fraissé games)
Arboreal A with right adjoint Rgr: Struct(o) — A such that
M, N are L (o)-equivalent =
Rer(M), Rer(N) are back-and-forth equivalent

Give sufficient conditionson L: A = € : R so that
M, N € € are L,-equivalent =
R(M), R(N) € A are back-and-forth equivalent
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Hintikka formulae

A “structure theorem” for arboreal adjunctions

A 1 &

In many examples:
» A and € are locally finitely presentable,
» theright R: & — A adjoint is finitary,
» the paths P of A are finitely presentable,
> given f: P — Xin A,

f “embedding” in A <= L(f) embedding of structures in £

Theorem (Reggio & R)
M,N € € are L.(€)-equivalent =
R(M), R(N) € A are back-and-forth equivalent
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Hintikka formulae

Proof
M /i\ . » & and A locally finitely presentable,
> ni 1 - 101 .
T finitary right a(.jj(.)lnt R: & — A,
R » paths P of A finitely presentable.

> f: P— X"embedding”in A <= L(f) embedding of structures in &.
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Proof
P /i\ . > & and A locally finitely presentable,
K - finitary right-adjoint R: & — A,
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(Hodges’ word-constructions (1974, 1975))
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IfX,Y are equivalent in L. (A), then X, Y are back-and-forth equivalent in A. I

» R: & — Ainduces a formula translation £ (A) = £ (E).

v

If M, N are equivalent in £ (&), then R(M), R(N) are back-and-forth equivalent in A.
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M, N € Struct(o) are L.(o)-equivalent =
R(M), R(N) € A are back-and-forth equivalent

Example.

» (Q,<)and (R, <) are L(<)-equivalent.

» R(Q), R(R) are back-and-forth equivalent in A.
Remark.

» Many non-isomorphic £ (<)-equivalent structures.
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An application

—
A 1 Struct(o)
\_/

R

M, N € Struct(o) are L.(o)-equivalent =
R(M), R(N) € A are back-and-forth equivalent

Example.
> (Q,<)and (R, <) are L(<)-equivalent.
» R(Q), R(R) are back-and-forth equivalent in A.

Remark.
» Many non-isomorphic £ (<)-equivalent structures.
Game comonad for MSO. (Jackl, Marsden & Shah, 2022)

> (Q,<) and (R, <) are not MSO(<)-equivalent.
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Toward a structure theory of game comonads via arboreal
categories.

» General conditions on R: & — A for
M,N € € are L,(€)-equivalent ==
R(M), R(N) € A are back-and-forth equivalent

> Restricts to finite games and finitary logic.
» Covers various examples.
Future work.
» Higher presentability ranks.
(Lindstrdm quantifiers (via the games of (Caicedo 1980)))
(Comonadic modal logic)
» Convey stronger invariants?
(E.g. finite variable constraint for pebble games)

Thanks for your attention!
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