Finitely accessible arboreal adjunctions and Hintikka formulae

Luca Reggio & Colin Riba

Department of Mathematics, Università degli Studi di Milano, Italy LIP, ENS de Lyon, France

PSSL 109 (November 2024)

Arboreal categories and model comparison games

A reformulation of an old example (1/2)

Formulation inspired from Abramsky & Shah (2018, 2021).

Arboreal categories and model comparison games

A reformulation of an old example (1/2)

Situation

 $\langle \overline{\mathbf{X}} \mid \varphi \rangle$

where

- $\blacktriangleright \overline{x} = x_1, \ldots, x_n$
- φ finite conjunction of contraints

 $((x_i < x_j) \text{ or } (x_i = x_j))$

Formulation inspired from Abramsky & Shah (2018, 2021).

Situation

$$\langle \overline{\mathbf{x}} \mid \varphi \rangle \xrightarrow{m} (\mathbf{M}, <_{\mathbf{M}})$$

where

- $\blacktriangleright \overline{X} = X_1, \ldots, X_n$
- $\blacktriangleright \varphi$ finite conjunction of contraints
- *m* is an order embedding:

$$egin{array}{lll} m(x_i) <_M m(x_j) & \iff & (x_i < x_j) ext{ in } arphi \ m(x_i) = m(x_j) & \iff & (x_i = x_j) ext{ in } arphi \end{array}$$

Formulation inspired from Abramsky & Shah (2018, 2021).

$$((x_i < x_j) \text{ or } (x_i = x_j))$$

$$((x_i < x_j) \text{ or } (x_i = x_i))$$

Let $(M, <_M)$ and $(N, <_N)$ be dense linear orders without end points. (e.g. $(\mathbb{Q}, <)$ and $(\mathbb{R}, <)$)

Formulation inspired from Abramsky & Shah (2018, 2021).

Let $(M, <_M)$ and $(N, <_N)$ be dense linear orders without end points. (e.g. $(\mathbb{Q}, <)$ and $(\mathbb{R}, <)$)

Ehrenfeucht-Fraïssé game

(played by Spoiler and Duplicator)

Formulation inspired from Abramsky & Shah (2018, 2021).

Let $(M, <_M)$ and $(N, <_N)$ be dense linear orders without end points. (e.g. $(\mathbb{Q}, <)$ and $(\mathbb{R}, <)$)

Ehrenfeucht-Fraïssé game

(played by Spoiler and Duplicator)

Formulation inspired from Abramsky & Shah (2018, 2021).

Let $(M, <_M)$ and $(N, <_N)$ be dense linear orders without end points. (e.g. $(\mathbb{Q}, <)$ and $(\mathbb{R}, <)$)

Ehrenfeucht-Fraïssé game

(played by Spoiler and Duplicator)

Formulation inspired from Abramsky & Shah (2018, 2021).

Let $(M, <_M)$ and $(N, <_N)$ be dense linear orders without end points. (e.g. $(\mathbb{Q}, <)$ and $(\mathbb{R}, <)$)

Formulation inspired from Abramsky & Shah (2018, 2021).

Let $(M, <_M)$ and $(N, <_N)$ be dense linear orders without end points. (e.g. $(\mathbb{Q}, <)$ and $(\mathbb{R}, <)$)

Duplicator wins since they can always respond.

Formulation inspired from Abramsky & Shah (2018, 2021).

Let $(M, <_M)$ and $(N, <_N)$ be dense linear orders without end points. (e.g. $(\mathbb{Q}, <)$ and $(\mathbb{R}, <)$)

Duplicator wins since they can always respond.

Corollary (..., Karp (1965))

 $(M, <_M)$ and $(N, <_N)$ are equivalent in $\mathcal{L}_{\infty}(<)$.

Formulation inspired from Abramsky & Shah (2018, 2021).

Arboreal categories and model comparison games

Toward game comonads

Abramsky, Dawar & Wang (2017), Abramsky & Shah (2018, 2021)...

Toward game comonads: turn plays into structures

Abramsky, Dawar & Wang (2017), Abramsky & Shah (2018, 2021)...

Toward game comonads: turn plays into structures Ehrenfeucht-Fraïssé games

Play

Abramsky, Dawar & Wang (2017), Abramsky & Shah (2018, 2021)...

Toward game comonads: turn plays into structures Ehrenfeucht-Fraïssé games

Play projected on M

Abramsky, Dawar & Wang (2017), Abramsky & Shah (2018, 2021)...

Toward game comonads: turn plays into structures Ehrenfeucht-Fraïssé games

Play projected on M

is an element of a structure $R_{\mathbb{EF}}(M)$ with carrier M^* .

Abramsky, Dawar & Wang (2017), Abramsky & Shah (2018, 2021)... Reggio & <u>Riba</u> (LIP, ENS de Lyon) Finitely accessible arboreal adjunctions and Hintikka formulae

Ehrenfeucht-Fraïssé games

▶ Play projected on *M* is an element of a structure *R*_{EF}(*M*) with carrier *M*^{*}.

Abramsky, Dawar & Wang (2017), Abramsky & Shah (2018, 2021), Abrasmky & Marsden (2021, 2022)...

Ehrenfeucht-Fraïssé games

► Play projected on *M* is an element of a structure *R*_{EF}(*M*) with carrier *M*^{*}.

Other examples

- Pebble games.
- Modal fragment, Hybrid fragment, Guarded fragments, ...

Abramsky, Dawar & Wang (2017), Abramsky & Shah (2018, 2021), Abrasmky & Marsden (2021, 2022)...

Ehrenfeucht-Fraïssé games

► Play projected on *M* is an element of a structure *R*_{EF}(*M*) with carrier *M*^{*}.

Other examples

- Pebble games.
- Modal fragment, Hybrid fragment, Guarded fragments, ...

Adjunctions

► The *R*(*M*) are structures with a tree order.

Abramsky, Dawar & Wang (2017), Abramsky & Shah (2018, 2021), Abrasmky & Marsden (2021, 2022)...

Ehrenfeucht-Fraïssé games

▶ Play projected on *M* is an element of a structure *R*_{EF}(*M*) with carrier *M*^{*}.

Other examples

- Pebble games.
- Modal fragment, Hybrid fragment, Guarded fragments, ...

Adjunctions

- ► The *R*(*M*) are structures with a tree order.
- ▶ In each case, *R* is a right adjoint.
- Comonads on $Struct(\sigma)$.

Abramsky, Dawar & Wang (2017), Abramsky & Shah (2018, 2021), Abrasmky & Marsden (2021, 2022)...

Arboreal categories

Abramsky & Reggio (2021, 2023).

Arboreal categories and model comparison games

Arboreal categories: motivations

Abramsky & Reggio (2021, 2023).

Arboreal categories and model comparison games

Arboreal categories: motivations

Conditions on \mathcal{A} which yield well-behaved games.

Abramsky & Reggio (2021, 2023).

Arboreal categories: main ideas Arboreal category *A*.

Abramsky & Reggio (2021, 2023).

Arboreal category A.

Factorization system (Q, M) on A: each morphism *f* factors as

 $(e \in \mathcal{Q}, m \in \mathcal{M})$

Arboreal category A.

Factorization system (Q, M) on A: each morphism *f* factors as

 $(e \in \mathcal{Q}, m \in \mathcal{M})$

► Typically, the "embeddings" $m \in M$ are embeddings of structures which are tree morphisms.

Arboreal category A.

Factorization system (Q, M) on A: each morphism *f* factors as

 $(e \in \mathcal{Q}, m \in \mathcal{M})$

- ► Typically, the "embeddings" $m \in M$ are embeddings of structures which are tree morphisms.
- ▶ $P \in A$ is a path when its \mathcal{M} -subobjects form a finite chain

$$S_1 \mapsto S_2 \mapsto \cdots \mapsto S_n$$

Arboreal category A.

Factorization system (Q, M) on A: each morphism *f* factors as

 $(e \in \mathcal{Q}, m \in \mathcal{M})$

- ► Typically, the "embeddings" $m \in M$ are embeddings of structures which are tree morphisms.
- ▶ $P \in A$ is a path when its M-subobjects form a finite chain

$$S_1 \rightarrow S_2 \rightarrow \cdots \rightarrow S_n$$

lnduced functor $\mathcal{A} \rightarrow \mathbf{Tree}$.

Abramsky & Reggio (2021, 2023).

Arboreal categories: back-and-forth equivalence Back-and-forth game $\mathcal{G}(X, Y)$. $(X, Y \in \mathcal{A})$

Abramsky & Reggio (2021, 2023).

Back-and-forth game $\mathcal{G}(X, Y)$.

 $(X, Y \in \mathcal{A})$ (*P* path)

Positions are spans of "embeddings"

Back-and-forth game $\mathcal{G}(X, Y)$. $(X, Y \in A)$

- Positions are spans of "embeddings"
- Moves:

(played by Spoiler and Duplicator)

Abramsky & Reggio (2021, 2023).

(P path)

Back-and-forth game $\mathcal{G}(X, Y)$.

- $(X, Y \in \mathcal{A})$ Positions are spans of "embeddings" (P path)
- Moves:

(played by Spoiler and Duplicator)

Back-and-forth game $\mathcal{G}(X, Y)$.

 $(X, Y \in \mathcal{A})$

(P path)

- Positions are spans of "embeddings"
- Moves:

(played by Spoiler and Duplicator)

Back-and-forth game $\mathcal{G}(X, Y)$.

- Positions are spans of "embeddings"
- Moves:

(played by Spoiler and Duplicator)

 $(X, Y \in \mathcal{A})$

(P path)

 $\begin{array}{c} & & P \\ & & \downarrow \\ & & \downarrow \\ & & (Spoiler) \end{array} \xrightarrow{} Q \xrightarrow{} (Duplicator) Y$

or symmetrically.

Abramsky & Reggio (2021, 2023).

Back-and-forth game $\mathcal{G}(X, Y)$.

- Positions are spans of "embeddings"
- Moves:

(played by Spoiler and Duplicator)

or symmetrically.

Duplicator wins if they can always respond.

Abramsky & Reggio (2021, 2023).

 $(X, Y \in \mathcal{A})$

(P path)

Back-and-forth game $\mathcal{G}(X, Y)$.

- Positions are spans of "embeddings"
- Moves:

(played by Spoiler and Duplicator)

 $(X, Y \in \mathcal{A})$

(P path)

or symmetrically.

Duplicator wins if they can always respond.

Definition

 $X, Y \in \mathcal{A}$ are back-and-forth equivalent if Duplicator wins $\mathcal{G}(X, Y)$.

Abramsky & Reggio (2021, 2023).

Back-and-forth game $\mathcal{G}(X, Y)$.

- Positions are spans of "embeddings"
- Moves:

(played by Spoiler and Duplicator)

 $(X, Y \in \mathcal{A})$

(P path)

or symmetrically.

Duplicator wins if they can always respond.

Definition

 $X, Y \in \mathcal{A}$ are back-and-forth equivalent if Duplicator wins $\mathcal{G}(X, Y)$.

Bisimulation via open maps.

(Joyal, Nielsen, Winskel)

Abramsky & Reggio (2021, 2023).

Our goal

Example (Ehrenfeucht-Fraïssé games) Arboreal \mathcal{A} with right adjoint $R_{\mathbb{EF}}$: Struct $(\sigma) \to \mathcal{A}$ such that M, N are $\mathcal{L}_{\infty}(\sigma)$ -equivalent \iff $R_{\mathbb{EF}}(M), R_{\mathbb{EF}}(N)$ are back-and-forth equivalent

8

Example (Ehrenfeucht-Fraïssé games)

Arboreal \mathcal{A} with right adjoint $R_{\mathbb{EF}}$: **Struct**(σ) $\rightarrow \mathcal{A}$ such that

 $R_{\mathbb{EF}}(M), R_{\mathbb{EF}}(N)$ are back-and-forth equivalent

Goal

Give sufficient conditions on $L: \mathcal{A} \rightleftharpoons \mathcal{E} : \mathbf{R}$ so that

 $M, N \in \mathcal{E} \text{ are } \mathcal{L}_{\infty} \text{-equivalent} \implies$

 $R(M), R(N) \in \mathcal{A}$ are back-and-forth equivalent

A "structure theorem" for arboreal adjunctions

A "structure theorem" for arboreal adjunctions

In many examples:

- A and \mathcal{E} are locally finitely presentable,
- the right $R: \mathcal{E} \to \mathcal{A}$ adjoint is finitary,

A "structure theorem" for arboreal adjunctions

In many examples:

- A and \mathcal{E} are locally finitely presentable,
- the right $R: \mathcal{E} \to \mathcal{A}$ adjoint is finitary,
- the paths P of A are finitely presentable,

A "structure theorem" for arboreal adjunctions

In many examples:

- \mathcal{A} and \mathcal{E} are locally finitely presentable,
- the right $R: \mathcal{E} \to \mathcal{A}$ adjoint is finitary,
- the paths P of A are finitely presentable,
- given $f: P \to X$ in \mathcal{A} ,

f "embedding" in $\mathcal{A} \iff L(f)$ embedding of structures in \mathcal{E}

A "structure theorem" for arboreal adjunctions

In many examples:

- \mathcal{A} and \mathcal{E} are locally finitely presentable,
- the right $R: \mathcal{E} \to \mathcal{A}$ adjoint is finitary,
- the paths P of A are finitely presentable,
- given $f: P \to X$ in \mathcal{A} ,

f "embedding" in $\mathcal{A} \iff L(f)$ embedding of structures in \mathcal{E}

Theorem (Reggio & <u>R</u>)

 $M, N \in \mathcal{E} \text{ are } \mathcal{L}_{\infty}(\mathcal{E})\text{-equivalent} \implies$

 $R(M), R(N) \in A$ are back-and-forth equivalent

• $f: P \rightarrow X$ "embedding" in A

- \mathcal{E} and \mathcal{A} locally finitely presentable,
- finitary right-adjoint $R: \mathcal{E} \to \mathcal{A}$,
- paths P of A finitely presentable.
- \iff *L*(*f*) embedding of structures in *E*.

Proof

- \mathcal{E} and \mathcal{A} locally finitely presentable,
- finitary right-adjoint $R: \mathcal{E} \to \mathcal{A}$,
- paths P of A finitely presentable.
- ► $f: P \to X$ "embedding" in $\mathcal{A} \iff L(f)$ embedding of structures in \mathcal{E} .
- ► A and E categories of models of (cartesian) theories. (Coste 1976)

Proof

- \mathcal{E} and \mathcal{A} locally finitely presentable,
- finitary right-adjoint $R: \mathcal{E} \to \mathcal{A}$,
- paths P of A finitely presentable.
- ► $f: P \to X$ "embedding" in $A \iff L(f)$ embedding of structures in \mathcal{E} .
- ► A and E categories of models of (cartesian) theories. (Coste 1976)
- ► Embeddings of structures in & (of f.p. domain) are definable in L_∞(&).

(functorial semantics and Yoneda lemma)

Proof

- \mathcal{E} and \mathcal{A} locally finitely presentable,
- finitary right-adjoint $R: \mathcal{E} \to \mathcal{A}$,
- paths P of A finitely presentable.
- ► $f: P \to X$ "embedding" in $\mathcal{A} \iff L(f)$ embedding of structures in \mathcal{E} .
- ► A and E categories of models of (cartesian) theories. (Coste 1976)
- Embeddings of structures in \mathcal{E} (of f.p. domain) are definable in $\mathcal{L}_{\infty}(\mathcal{E})$.

(functorial semantics and Yoneda lemma)

▶ Left adjoint *L*: $\mathcal{A} \to \mathcal{E}$ induces a formula translation $\mathcal{L}_{\infty}(\mathcal{E}) \to \mathcal{L}_{\infty}(\mathcal{A})$.

(Hodges' word-constructions (1974, 1975))

Proof

- \mathcal{E} and \mathcal{A} locally finitely presentable,
- finitary right-adjoint $R: \mathcal{E} \to \mathcal{A}$,
- paths P of A finitely presentable.
- ► $f: P \to X$ "embedding" in $\mathcal{A} \iff L(f)$ embedding of structures in \mathcal{E} .
- ► A and E categories of models of (cartesian) theories. (Coste 1976)
- Embeddings of structures in \mathcal{E} (of f.p. domain) are definable in $\mathcal{L}_{\infty}(\mathcal{E})$.

(functorial semantics and Yoneda lemma)

▶ Left adjoint *L*: $A \to E$ induces a formula translation $\mathcal{L}_{\infty}(E) \to \mathcal{L}_{\infty}(A)$.

(Hodges' word-constructions (1974, 1975))

• Hintikka formulae in $\mathcal{L}_{\infty}(\mathcal{A})$ for back-and-forth games in \mathcal{A} .

(define ordinal ranks of positions in games)

Proof

- \mathcal{E} and \mathcal{A} locally finitely presentable,
- finitary right-adjoint $R: \mathcal{E} \to \mathcal{A}$,
- paths P of A finitely presentable.
- ► $f: P \to X$ "embedding" in $\mathcal{A} \iff L(f)$ embedding of structures in \mathcal{E} .
- ► A and E categories of models of (cartesian) theories. (Coste 1976)
- Embeddings of structures in \mathcal{E} (of f.p. domain) are definable in $\mathcal{L}_{\infty}(\mathcal{E})$.

(functorial semantics and Yoneda lemma)

▶ Left adjoint *L*: $A \to E$ induces a formula translation $\mathcal{L}_{\infty}(E) \to \mathcal{L}_{\infty}(A)$.

(Hodges' word-constructions (1974, 1975))

Hintikka formulae in $\mathcal{L}_{\infty}(\mathcal{A})$ for back-and-forth games in \mathcal{A} .

(define ordinal ranks of positions in games)

Lemma

If X, Y are equivalent in $\mathcal{L}_{\infty}(\mathcal{A})$, then X, Y are back-and-forth equivalent in \mathcal{A} .

Proof

- \mathcal{E} and \mathcal{A} locally finitely presentable,
- finitary right-adjoint $R: \mathcal{E} \to \mathcal{A}$,
- paths P of A finitely presentable.
- ► $f: P \to X$ "embedding" in $\mathcal{A} \iff L(f)$ embedding of structures in \mathcal{E} .
- ► A and E categories of models of (cartesian) theories. (Coste 1976)
- Embeddings of structures in \mathcal{E} (of f.p. domain) are definable in $\mathcal{L}_{\infty}(\mathcal{E})$.

(functorial semantics and Yoneda lemma)

▶ Left adjoint $L: \mathcal{A} \to \mathcal{E}$ induces a formula translation $\mathcal{L}_{\infty}(\mathcal{E}) \to \mathcal{L}_{\infty}(\mathcal{A})$.

(Hodges' word-constructions (1974, 1975))

Hintikka formulae in $\mathcal{L}_{\infty}(\mathcal{A})$ for back-and-forth games in \mathcal{A} .

(define ordinal ranks of positions in games)

Lemma

If X, Y are equivalent in $\mathcal{L}_{\infty}(\mathcal{A})$, then X, Y are back-and-forth equivalent in \mathcal{A} .

• $R: \mathcal{E} \to \mathcal{A}$ induces a formula translation $\mathcal{L}_{\infty}(\mathcal{A}) \to \mathcal{L}_{\infty}(\mathcal{E})$.

Proof

- \mathcal{E} and \mathcal{A} locally finitely presentable,
- finitary right-adjoint $R: \mathcal{E} \to \mathcal{A}$,
- paths P of A finitely presentable.
- ► $f: P \to X$ "embedding" in $\mathcal{A} \iff L(f)$ embedding of structures in \mathcal{E} .
- ► A and E categories of models of (cartesian) theories. (Coste 1976)
- Embeddings of structures in \mathcal{E} (of f.p. domain) are definable in $\mathcal{L}_{\infty}(\mathcal{E})$.

(functorial semantics and Yoneda lemma)

▶ Left adjoint $L: \mathcal{A} \to \mathcal{E}$ induces a formula translation $\mathcal{L}_{\infty}(\mathcal{E}) \to \mathcal{L}_{\infty}(\mathcal{A})$.

(Hodges' word-constructions (1974, 1975))

Hintikka formulae in $\mathcal{L}_{\infty}(\mathcal{A})$ for back-and-forth games in \mathcal{A} .

(define ordinal ranks of positions in games)

Lemma

If X, Y are equivalent in $\mathcal{L}_{\infty}(\mathcal{A})$, then X, Y are back-and-forth equivalent in \mathcal{A} .

• $R: \mathcal{E} \to \mathcal{A}$ induces a formula translation $\mathcal{L}_{\infty}(\mathcal{A}) \to \mathcal{L}_{\infty}(\mathcal{E})$.

Theorem

If M, N are equivalent in $\mathcal{L}_{\infty}(\mathcal{E})$, then R(M), R(N) are back-and-forth equivalent in \mathcal{A} .

An application

Theorem

$M, N \in \text{Struct}(\sigma) \text{ are } \mathcal{L}_{\infty}(\sigma)\text{-equivalent} \implies R(M), R(N) \in \mathcal{A} \text{ are back-and-forth equivalent}$

An application

Theorem

$M, N \in \text{Struct}(\sigma) \text{ are } \mathcal{L}_{\infty}(\sigma)\text{-equivalent} \implies$ $R(M), R(N) \in \mathcal{A} \text{ are back-and-forth equivalent}$

Example.

- ▶ $(\mathbb{Q}, <)$ and $(\mathbb{R}, <)$ are $\mathcal{L}_{\infty}(<)$ -equivalent.
- ▶ $R(\mathbb{Q}), R(\mathbb{R})$ are back-and-forth equivalent in \mathcal{A} .

Remark.

• Many non-isomorphic $\mathcal{L}_{\infty}(<)$ -equivalent structures.

An application

Theorem

$M, N \in \mathsf{Struct}(\sigma) \text{ are } \mathcal{L}_{\infty}(\sigma) \text{-equivalent} \implies \mathcal{D}(M) = \mathcal{D}(M)$

 $R(M), R(N) \in \mathcal{A}$ are back-and-forth equivalent

Example.

- ▶ $(\mathbb{Q}, <)$ and $(\mathbb{R}, <)$ are $\mathcal{L}_{\infty}(<)$ -equivalent.
- ▶ $R(\mathbb{Q}), R(\mathbb{R})$ are back-and-forth equivalent in \mathcal{A} .

Remark.

• Many non-isomorphic $\mathcal{L}_{\infty}(<)$ -equivalent structures.

Game comonad for MSO. (Jackl, Marsden & Shah, 2022) (\mathbb{Q} , <) and (\mathbb{R} , <) are not **MSO**(<)-equivalent.

Conclusion

Conclusion and future work

Toward a structure theory of game comonads via arboreal categories.

General conditions on R: E → A for
 M, N ∈ E are L_∞(E)-equivalent ⇒
 R(M), R(N) ∈ A are back-and-forth equivalent

Conclusion

Conclusion and future work

Toward a structure theory of game comonads via arboreal categories.

- General conditions on *R*: *E* → *A* for
 M, *N* ∈ *E* are *L*_∞(*E*)-equivalent ⇒
 R(*M*), *R*(*N*) ∈ *A* are back-and-forth equivalent
- Restricts to finite games and finitary logic.
- Covers various examples.

Conclusion and future work

Toward a structure theory of game comonads via arboreal categories.

- ► General conditions on $R: \mathcal{E} \to \mathcal{A}$ for $M, N \in \mathcal{E}$ are $\mathcal{L}_{\infty}(\mathcal{E})$ -equivalent \implies $R(M), R(N) \in \mathcal{A}$ are back-and-forth equivalent
- Restricts to finite games and finitary logic.
- Covers various examples.

Future work.

Higher presentability ranks.

(Lindström quantifiers (via the games of (Caicedo 1980)))

(Comonadic modal logic)

Convey stronger invariants?

(E.g. finite variable constraint for pebble games)

Conclusion and future work

Toward a structure theory of game comonads via arboreal categories.

- ► General conditions on $R: \mathcal{E} \to \mathcal{A}$ for $M, N \in \mathcal{E}$ are $\mathcal{L}_{\infty}(\mathcal{E})$ -equivalent \implies $R(M), R(N) \in \mathcal{A}$ are back-and-forth equivalent
- Restricts to finite games and finitary logic.
- Covers various examples.

Future work.

Higher presentability ranks.

(Lindström quantifiers (via the games of (Caicedo 1980)))

(Comonadic modal logic)

Convey stronger invariants?

(E.g. finite variable constraint for pebble games)

Thanks for your attention!

Reggio & Riba (LIP, ENS de Lyon)

Finitely accessible arboreal adjunctions and Hintikka formulae