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Introduction of ∆

Motivation: Simpson’s conjecture

Motivation for Kock (2006) to introduce ∆:

The simplex category ∆ with degeneracies up to homotopy
The identity coherence structure is part of the data as objects

Motivation, in low dimension, for Paoli (2024) to study ∆ further

Motivation: higher categories in homotopical type theories

Construct Reedy fibrant diagrams over direct categories

Use simplicial methods

Obstacle: ∆ is not a direct category ⇝ Need of a direct replacement

Introduction of a variation of ∆ by Kraus and Sattler (2017)

There are other issues: working with degeneracies might be problematic in a
constructive framework, as explained by Sattler (2018).
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Developing properties of ∆

We have developed

Factorisation systems

Nerve theorem

Generators and relations

In this talk we will focus on how we get the two first points.
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Definition of ∆

Definition (Relative semicategories and semiordinals)

Semicategory = Category w/o identity structure
Relative semicategory = Semicategory w/ wide subsemicategory

Semiordinal = Total strict order (viewed as a semicategory)

Definition (Fat Delta ∆, Kock 2006)

The category ∆ is the category of relative finite non-empty semiordinals and
maps between them.

Examples

0→1

0→1→2

0→1→2→3
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The category ∆ also admits another description: Epi(∆)Mono

Objects Morphisms

Epimorphisms in ∆ Squares of the form

0 1 2 3

0 1

[k]

[n]

η

[k] [l ]

[n] [m]

⇝ Investigation using the theory of monads with arities.
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Monad with arities: Idea

Generalized nerve constructions

Algebras as presheaves with (Segal) conditions

Correspondence: monads ←→ algebraic theories

Example: The simplex category ∆

Let fc : Graph→ Graph be the free category monad on directed graphs, then

arities = ∆0 (the wide subcategory of distance-preserving maps)

the associated theory Θfc = ∆

the nerve N : Cat→ ∆̂ is fully faithful

small categories = simplicial sets satisfying the Segal condition

active-inert factorisation system.
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Monad with arities: Definition

Let iA : A ↪→ E with A dense, recall that

every object X can be identified with the canonical colimit over the slice A/X

the A-nerve functor NA : E → Â, X 7→ E(iA,X ) is fully faithful.

Definition (Monad with arities, Weber 2007)

A monad (T , µ, ν) on E has arities A if the functor NA T preserves the canonical
colimits over slices A/X .

⇝ We rather work with a sufficient property: strongly cartesian monads.
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Step 1: Construction of f+

Using forgetful functors we can construct the following diagram:

RelGraph RelSemiCat

Graph SemiCat

f+

( )u

Fr+

⊣

U+

( )u

f

Fr

⊣

U

fG = ([n]→ G ,+)

f+(G+ ↪→ G ) = fG+ ↪→ fG
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Step 2: f and f+ are strongly cartesian

Definition (Strongly cartesian monad, Street 2000)

A monad (T , µ, ν) on category E with a terminal object 1 is strongly cartesian if it
is

cartesian: E has pullbacks, T preserves them, and µ and ν are cartesian

local right adjoint: the functor T1 : E → E/T1 has a left adjoint.

The second condition is equivalent to asking that each f : A→ T1 factors as

A
g−→ TX

T !1−−→ T1

where g has the following property (T -generic):

A TX ′

TX TY

α

g Tγ

Tβ

Tδ such that γδ = β and T δg = α.

T. de Jong, N. Kraus, S. Paoli, S. Pradal A study of Kock’s fat Delta 109th PSSL - 17/11/2024 10 / 14



Step 2: f and f+ are strongly cartesian

Definition (Strongly cartesian monad, Street 2000)

A monad (T , µ, ν) on category E with a terminal object 1 is strongly cartesian if it
is

cartesian: E has pullbacks, T preserves them, and µ and ν are cartesian

local right adjoint: the functor T1 : E → E/T1 has a left adjoint.

The second condition is equivalent to asking that each f : A→ T1 factors as

A
g−→ TX

T !1−−→ T1

where g has the following property (T -generic):

A TX ′

TX TY

α

g Tγ

Tβ

Tδ such that γδ = β and T δg = α.

T. de Jong, N. Kraus, S. Paoli, S. Pradal A study of Kock’s fat Delta 109th PSSL - 17/11/2024 10 / 14



Proposition

The monad f : Graph→ Graph is strongly cartesian.

Sketch of the proof.

It boils down to proving that the morphism n̂ : [1]→ f[n] mapping [1] to the
maximal path id[n] is f-generic:

[1] fX

f[n] fY

α

n̂ f γ

f β

f δ

Define δ : [n]→ X as the image of α.

Proposition

The monad f+ : RelGraph→ RelGraph is strongly cartesian.
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Step 3: Construction of the arities

Theorem (Berger, Melliès, and Weber 2012)

Suppose T is a strongly cartesian monad on E (finitely complete) with a dense
generator A. Then T is a monad with arities AT given by taking the full
subcategory of E generated by the T -generic factorisations A→ TAT → T1.

Definition (The dense subcategory A)
The category A consists of alternatingly marked linear graphs
n0 = [1]♯ + [1]♭ + · · ·+ [1]σ

0
n and n1 = [1]♭ + [1]♯ + · · ·+ [1]σ

1
n and relative graph

morphisms between them.

Proposition

Any map nϵ → f+ 1 has a f+-generic factorisation given by

nϵ → f+[m1]
σϵ
1 + · · ·+ [mn]

σϵ
n → f+ 1
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Step 4: Results

Denote by ∆0 the subcategory of ∆ consisting of relative semiordinals and
distance preserving morphisms.

Theorem (Arities ∆0 and the associated theory ∆)

The category of arities ∆0 is the full subcategory of RelGraph generated by
the objects of the form [m1]

σϵ
1 + · · ·+ [mn]

σϵ
n (marked linear graphs).

The associated theory is the category of free f+-algebras over ∆0, that is the
category ∆ of relative semiordinals.

Theorem (Active-inert factorisation system (∆a,∆0))

The category ∆ has an active-inert factorisation system (∆a,∆0) consisting of
distance-preserving and endpoint-preserving morphisms.

Theorem (Nerve theorem for N )

The nerve functor N : RelSemiCat→ ∆̂ is fully faithful, and the essential image is
spanned by the presheaves whose restriction along ∆0 ↪→ ∆ belongs to the

essential image of N : RelGraph→ ∆̂0.
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Conclusion

Contribution

Nerve theorem for ∆

Active-inert factorisation system (∆a,∆0)

Generalised Segal conditions

The category ∆ enjoys many similar properties as ∆

In particular, ∆ is for relative semicategories what ∆ is for categories

Work in progress

∆ as a hypermoment category (in the sense of Berger (2022))

∆-spaces

Thank you!
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