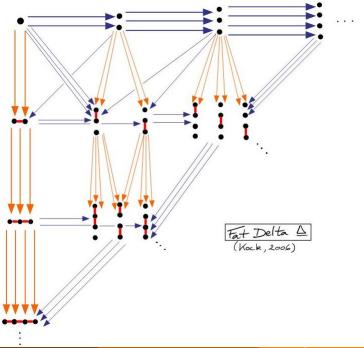
A study of Kock's fat Delta

Tom de Jong¹ Nicolai Kraus¹ Simona Paoli² Stiéphen Pradal¹

¹University of Nottingham ²University of Aberdeen

17th November 2024, 109th PSSL, Leiden



Motivation: Simpson's conjecture

• Motivation for Kock (2006) to introduce $\underline{\Delta}$:

- $\bullet\,$ The simplex category Δ with degeneracies up to homotopy
- The identity coherence structure is part of the data as objects
- Motivation, in low dimension, for Paoli (2024) to study $\underline{\Delta}$ further

Motivation: Simpson's conjecture

- Motivation for Kock (2006) to introduce $\underline{\Delta}$:
 - $\bullet\,$ The simplex category Δ with degeneracies up to homotopy
 - The identity coherence structure is part of the data as objects
- Motivation, in low dimension, for Paoli (2024) to study $\underline{\Delta}$ further

Motivation: higher categories in homotopical type theories

- Construct Reedy fibrant diagrams over direct categories
- Use simplicial methods

Obstacle: Δ is not a direct category \rightsquigarrow Need of a direct replacement

• Introduction of a variation of $\underline{\Delta}$ by Kraus and Sattler (2017)

There are other issues: working with degeneracies might be problematic in a constructive framework, as explained by Sattler (2018).

We have developed

- Factorisation systems
- Nerve theorem
- Generators and relations

We have developed

- Factorisation systems
- Nerve theorem
- Generators and relations

In this talk we will focus on how we get the two first points.

Definition (Relative semicategories and semiordinals)

Semicategory	=	Category w/o identity structure
Relative semicategory	=	Semicategory w/ wide subsemicategory
Semiordinal	=	Total strict order (viewed as a semicategory)

Definition (Relative semicategories and semiordinals)

Semicategory	=	Category w/o identity structure
Relative semicategory	=	Semicategory w/ wide subsemicategory
Semiordinal	=	Total strict order (viewed as a semicategory)

Definition (Fat Delta $\underline{\Delta}$, Kock 2006)

The category $\underline{\Delta}$ is the category of relative finite non-empty semiordinals and maps between them.

Definition (Relative semicategories and semiordinals)

Semicategory	=	Category w/o identity structure
Relative semicategory	=	Semicategory w/ wide subsemicategory
Semiordinal	=	Total strict order (viewed as a semicategory)

Definition (Fat Delta $\underline{\Delta}$, Kock 2006)

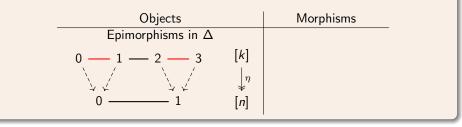
The category $\underline{\Delta}$ is the category of relative finite non-empty semiordinals and maps between them.

Examples	
 0→1 	
• $0 \rightarrow 1 \rightarrow 2$	
 0→1→2→3 	

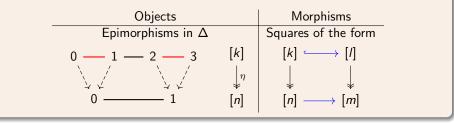
The category $\underline{\Delta}$ also admits another description. Lpi(Δ) _{Mono}					
Objects	Morphisms				

The category $\underline{\Delta}$ also admits another description: $\mathsf{Epi}(\Delta)_{\mathsf{Mono}}$

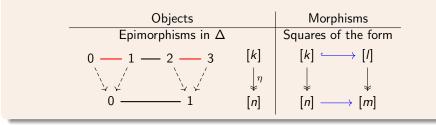
b.



The category $\underline{\Delta}$ also admits another description: $Epi(\Delta)_{Mono}$



The category $\underline{\Delta}$ also admits another description: $Epi(\Delta)_{Mono}$



The category $\underline{\Delta}$ also admits another description: $Epi(\Delta)_{Mono}$

 \rightsquigarrow Investigation using the theory of **monads with arities**.

Monad with arities: Idea

- Generalized nerve constructions
- Algebras as presheaves with (Segal) conditions
- \bullet Correspondence: monads \longleftrightarrow algebraic theories

Monad with arities: Idea

- Generalized nerve constructions
- Algebras as presheaves with (Segal) conditions
- Orrespondence: monads ↔ algebraic theories

Example: The simplex category Δ

Let $\mathsf{fc}:\mathsf{Graph}\to\mathsf{Graph}$ be the free category monad on directed graphs, then

- arities = Δ_0 (the wide subcategory of distance-preserving maps)
- \bullet the associated theory $\Theta_{fc}=\Delta$
- the nerve $\mathcal{N}:\mathsf{Cat}\to\widehat{\Delta}$ is fully faithful
- small categories = simplicial sets satisfying the Segal condition
- active-inert factorisation system.

Let $i_{\mathcal{A}} : \mathcal{A} \hookrightarrow \mathcal{E}$ with \mathcal{A} dense, recall that

- $\bullet\,$ every object X can be identified with the canonical colimit over the slice $\mathcal{A}_{/X}$
- the \mathcal{A} -nerve functor $\mathcal{N}_{\mathcal{A}}: \mathcal{E} \to \widehat{\mathcal{A}}, \ X \mapsto \mathcal{E}(i_{\mathcal{A}}, X)$ is fully faithful.

Let $i_{\mathcal{A}} : \mathcal{A} \hookrightarrow \mathcal{E}$ with \mathcal{A} dense, recall that

- every object X can be identified with the canonical colimit over the slice $\mathcal{A}_{/X}$
- the \mathcal{A} -nerve functor $\mathcal{N}_{\mathcal{A}} : \mathcal{E} \to \widehat{\mathcal{A}}, \ X \mapsto \mathcal{E}(i_{\mathcal{A}}, X)$ is fully faithful.

Definition (Monad with arities, Weber 2007)

A monad (T, μ, ν) on \mathcal{E} has arities \mathcal{A} if the functor $\mathcal{N}_{\mathcal{A}} T$ preserves the canonical colimits over slices $\mathcal{A}_{/X}$.

Let $i_{\mathcal{A}} : \mathcal{A} \hookrightarrow \mathcal{E}$ with \mathcal{A} dense, recall that

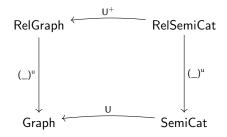
- every object X can be identified with the canonical colimit over the slice $\mathcal{A}_{/X}$
- the \mathcal{A} -nerve functor $\mathcal{N}_{\mathcal{A}} : \mathcal{E} \to \widehat{\mathcal{A}}, \ X \mapsto \mathcal{E}(i_{\mathcal{A}}, X)$ is fully faithful.

Definition (Monad with arities, Weber 2007)

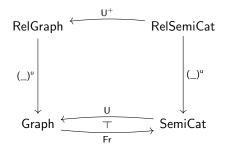
A monad (T, μ, ν) on \mathcal{E} has arities \mathcal{A} if the functor $\mathcal{N}_{\mathcal{A}} T$ preserves the canonical colimits over slices $\mathcal{A}_{/X}$.

 \rightsquigarrow We rather work with a sufficient property: **strongly cartesian** monads.

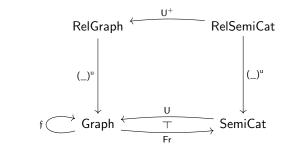
Using forgetful functors we can construct the following diagram:



Using forgetful functors we can construct the following diagram:



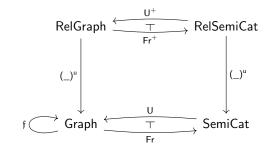
Using forgetful functors we can construct the following diagram:



• $\mathfrak{f} G = ([n] \rightarrow G, +)$

Step 1: Construction of f^+

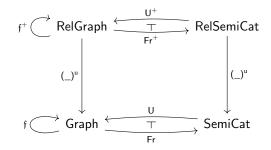
Using forgetful functors we can construct the following diagram:



• $\mathfrak{f} G = ([n] \rightarrow G, +)$

Step 1: Construction of f^+

Using forgetful functors we can construct the following diagram:



•
$$\mathfrak{f} G = ([n] \to G, +)$$

• $\mathfrak{f}^+(G^+ \hookrightarrow G) = \mathfrak{f} G^+ \hookrightarrow \mathfrak{f} G$

Step 2: f and f^+ are strongly cartesian

Definition (Strongly cartesian monad, Street 2000)

A monad (T, μ, ν) on category $\mathcal E$ with a terminal object 1 is strongly cartesian if it is

cartesian: \mathcal{E} has pullbacks, T preserves them, and μ and ν are cartesian local right adjoint: the functor $T_1 : \mathcal{E} \to \mathcal{E}_{/T1}$ has a left adjoint.

Definition (Strongly cartesian monad, Street 2000)

A monad (T, μ, ν) on category $\mathcal E$ with a terminal object 1 is strongly cartesian if it is

cartesian: \mathcal{E} has pullbacks, T preserves them, and μ and ν are cartesian local right adjoint: the functor $T_1 : \mathcal{E} \to \mathcal{E}_{/T1}$ has a left adjoint.

The second condition is equivalent to asking that each $f : A \rightarrow T1$ factors as

$$A \xrightarrow{g} TX \xrightarrow{T!_1} T1$$

where g has the following property (T-generic):

$$\begin{array}{ccc} A & \stackrel{\alpha}{\longrightarrow} TX' \\ g & & T\delta & \uparrow & \uparrow T\gamma \\ TX & \stackrel{T\delta}{\longrightarrow} TY \end{array} \text{ such that } \gamma\delta = \beta \text{ and } T\delta g = \alpha.$$

The monad $\mathfrak{f}:\mathsf{Graph}\to\mathsf{Graph}$ is strongly cartesian.

The monad $\mathfrak{f}:\mathsf{Graph}\to\mathsf{Graph}$ is strongly cartesian.

Sketch of the proof.

It boils down to proving that the morphism $\hat{n} : [1] \to \mathfrak{f}[n]$ mapping [1] to the **maximal path** $id_{[n]}$ is \mathfrak{f} -generic:

$$\begin{bmatrix} 1 \end{bmatrix} \xrightarrow{\alpha} f X \\ \uparrow \downarrow & \qquad \qquad \downarrow f \gamma \\ f[n] \xrightarrow{f \beta} f Y$$

The monad $\mathfrak{f}:\mathsf{Graph}\to\mathsf{Graph}$ is strongly cartesian.

Sketch of the proof.

It boils down to proving that the morphism $\hat{n} : [1] \to \mathfrak{f}[n]$ mapping [1] to the **maximal path** $id_{[n]}$ is \mathfrak{f} -generic:

$$\begin{bmatrix} 1 \end{bmatrix} \xrightarrow{\alpha} f X \\ f \downarrow & f \downarrow f \downarrow f \downarrow f \uparrow \\ f [n] \xrightarrow{f \beta} f Y$$

Define $\delta : [n] \to X$ as the image of α .

The monad $\mathfrak{f}:\mathsf{Graph}\to\mathsf{Graph}$ is strongly cartesian.

Sketch of the proof.

It boils down to proving that the morphism $\hat{n} : [1] \to \mathfrak{f}[n]$ mapping [1] to the **maximal path** $id_{[n]}$ is \mathfrak{f} -generic:

$$\begin{bmatrix} 1 \end{bmatrix} \xrightarrow{\alpha} f X \\ f \downarrow & f \downarrow f \downarrow f \uparrow \\ f [n] \xrightarrow{f \beta} f Y$$

Define $\delta : [n] \to X$ as the image of α .

Proposition

The monad \mathfrak{f}^+ : RelGraph \rightarrow RelGraph *is strongly cartesian*.

Theorem (Berger, Melliès, and Weber 2012)

Suppose T is a strongly cartesian monad on \mathcal{E} (finitely complete) with a dense generator \mathcal{A} . Then T is a monad with arities \mathcal{A}_T given by taking the full subcategory of \mathcal{E} generated by the T-generic factorisations $A \to TA_T \to T1$.

Theorem (Berger, Melliès, and Weber 2012)

Suppose T is a strongly cartesian monad on \mathcal{E} (finitely complete) with a dense generator \mathcal{A} . Then T is a monad with arities \mathcal{A}_T given by taking the full subcategory of \mathcal{E} generated by the T-generic factorisations $A \to TA_T \to T1$.

Definition (The dense subcategory \mathbb{A})

The category A consists of **alternatingly marked linear graphs** $\mathfrak{n}^0 = [1]^{\sharp} + [1]^{\flat} + \cdots + [1]^{\sigma_n^0}$ and $\mathfrak{n}^1 = [1]^{\flat} + [1]^{\sharp} + \cdots + [1]^{\sigma_n^1}$ and relative graph morphisms between them.

Theorem (Berger, Melliès, and Weber 2012)

Suppose T is a strongly cartesian monad on \mathcal{E} (finitely complete) with a dense generator \mathcal{A} . Then T is a monad with arities \mathcal{A}_T given by taking the full subcategory of \mathcal{E} generated by the T-generic factorisations $A \to TA_T \to T1$.

Definition (The dense subcategory \mathbb{A})

The category A consists of **alternatingly marked linear graphs** $\mathfrak{n}^0 = [1]^{\sharp} + [1]^{\flat} + \cdots + [1]^{\sigma_n^0}$ and $\mathfrak{n}^1 = [1]^{\flat} + [1]^{\sharp} + \cdots + [1]^{\sigma_n^1}$ and relative graph morphisms between them.

Proposition

Any map
$$\mathfrak{n}^{\varepsilon} \to \mathfrak{f}^+ \, 1$$
 has a $\mathfrak{f}^+\text{-generic factorisation given by}$

$$\mathfrak{n}^{\epsilon} \to \mathfrak{f}^{+}[m_{1}]^{\sigma_{1}^{\epsilon}} + \cdots + [m_{n}]^{\sigma_{n}^{\epsilon}} \to \mathfrak{f}^{+} \mathbf{1}$$

Denote by $\underline{\Delta}_0$ the subcategory of $\underline{\Delta}$ consisting of relative semiordinals and distance preserving morphisms.

Denote by $\underline{\Delta}_0$ the subcategory of $\underline{\Delta}$ consisting of relative semiordinals and distance preserving morphisms.

Theorem (Arities $\underline{\Delta}_0$ and the associated theory $\underline{\Delta}$)

- The category of arities $\underline{\Delta}_0$ is the full subcategory of RelGraph generated by the objects of the form $[m_1]^{\sigma_1^{\epsilon}} + \cdots + [m_n]^{\sigma_n^{\epsilon}}$ (marked linear graphs).
- The associated theory is the category of free f⁺-algebras over <u>∆</u>₀, that is the category <u>∆</u> of relative semiordinals.

Denote by $\underline{\Delta}_0$ the subcategory of $\underline{\Delta}$ consisting of relative semiordinals and distance preserving morphisms.

Theorem (Arities $\underline{\Delta}_0$ and the associated theory $\underline{\Delta}$)

- The category of arities $\underline{\Delta}_0$ is the full subcategory of RelGraph generated by the objects of the form $[m_1]^{\sigma_1^{\epsilon}} + \cdots + [m_n]^{\sigma_n^{\epsilon}}$ (marked linear graphs).
- The associated theory is the category of free f⁺-algebras over <u>∆</u>₀, that is the category <u>∆</u> of relative semiordinals.

Theorem (Active-inert factorisation system $(\underline{\Delta}_a, \underline{\Delta}_0)$)

The category $\underline{\Delta}$ has an **active-inert** factorisation system ($\underline{\Delta}_a, \underline{\Delta}_0$) consisting of distance-preserving and endpoint-preserving morphisms.

Denote by $\underline{\Delta}_0$ the subcategory of $\underline{\Delta}$ consisting of relative semiordinals and distance preserving morphisms.

Theorem (Arities $\underline{\Delta}_0$ and the associated theory $\underline{\Delta}$)

- The category of arities $\underline{\Delta}_0$ is the full subcategory of RelGraph generated by the objects of the form $[m_1]^{\sigma_1^{\epsilon}} + \cdots + [m_n]^{\sigma_n^{\epsilon}}$ (marked linear graphs).
- The associated theory is the category of free f⁺-algebras over <u>∆</u>₀, that is the category <u>∆</u> of relative semiordinals.

Theorem (Active-inert factorisation system $(\underline{\Delta}_a, \underline{\Delta}_0)$)

The category $\underline{\Delta}$ has an **active-inert** factorisation system ($\underline{\Delta}_a, \underline{\Delta}_0$) consisting of distance-preserving and endpoint-preserving morphisms.

Theorem (Nerve theorem for $\underline{\mathcal{N}}$)

The nerve functor $\underline{\mathcal{N}}$: RelSemiCat $\rightarrow \underline{\widehat{\Delta}}$ is **fully faithful**, and the essential image is spanned by the presheaves whose restriction along $\underline{\Delta}_0 \hookrightarrow \underline{\Delta}$ belongs to the essential image of $\underline{\mathcal{N}}$: RelGraph $\rightarrow \underline{\widehat{\Delta}_0}$.

Contribution

- Nerve theorem for $\underline{\Delta}$
- Active-inert factorisation system $(\underline{\Delta}_a, \underline{\Delta}_0)$
- Generalised Segal conditions

Contribution

- Nerve theorem for $\underline{\Delta}$
- Active-inert factorisation system $(\underline{\Delta}_a, \underline{\Delta}_0)$
- Generalised Segal conditions
- ${\scriptstyle \bullet}$ The category $\underline{\Delta}$ enjoys many similar properties as Δ
- $\bullet\,$ In particular, $\underline{\Delta}$ is for relative semicategories what Δ is for categories

Contribution

- Nerve theorem for Δ
- Active-inert factorisation system $(\underline{\Delta}_a, \underline{\Delta}_0)$
- Generalised Segal conditions
- ${\scriptstyle \bullet}$ The category $\underline{\Delta}$ enjoys many similar properties as Δ
- $\bullet\,$ In particular, $\underline{\Delta}$ is for relative semicategories what Δ is for categories

Work in progress

- Δ as a hypermoment category (in the sense of Berger (2022))
- <u>∆</u>-spaces

Contribution

- Nerve theorem for Δ
- Active-inert factorisation system $(\underline{\Delta}_a, \underline{\Delta}_0)$
- Generalised Segal conditions
- ${\scriptstyle \bullet}$ The category $\underline{\Delta}$ enjoys many similar properties as Δ
- $\bullet\,$ In particular, $\underline{\Delta}$ is for relative semicategories what Δ is for categories

Work in progress

- Δ as a hypermoment category (in the sense of Berger (2022))
- <u>∆</u>-spaces

Thank you!

Bibliography

