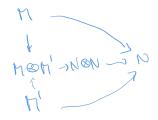
Generalized Fox's Theorem and pseudocommutativity (work in progress, joint with John Bourke)

Tomáš Perutka

16.11.2024



Thm. (baby Fox)

Tensor product of commutative rings is their coproduct.

Thm. (adult Fox)

For any symmetric monoidal category $(\mathcal{C}, \otimes, I)$, tensor product lifts to the category $\mathsf{CMon}(\mathcal{C})$ and equips it with a cocartesian monoidal structure.

Thm. (formal Fox)

CMon(-): $SMCat \rightarrow SMCat$ is an idempotent 2-comonad and the (inclusion of the) full sub-2-category of coalgebras can be identified with $Cat^{\sqcup} \rightarrow SMCat$.

(· cats with finik coproduts · coproduct - preserving functors · natural transformations · monoidal natural transformations

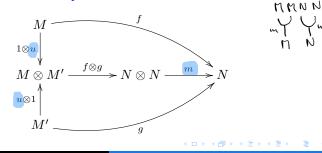
Why is this true?

Thm. (adult Fox)

For any symmetric monoidal category $(\mathcal{C}, \otimes, I)$, tensor product lifts to the category $\mathsf{CMon}(\mathcal{C})$ and equips it with a cocartesian monoidal structure.

Sketch of the proof:

- For M, N ∈ CMon(C), M ⊗ N carries a structure of commutative monoid as well. (Need symmetric monoidal categories!)
 (MN)(MN)
- Tensor product is a coproduct in CMon(C): need the algebraic operations to be homomorphisms!



Lemma (folklore?)

CMon(-) extends to an idempotent 2-comonad on $SMCat^{lax}$ and the coalgebras are: cats with finite coproducts, **all functors**, natural transformations.

Sketch of the proof:

- Lax functor F: C → D lifts to CMon(C) → CMon(D), in fact: CMon(C) = Fun^{lax}(*, C).
- ② Laxator $FM \otimes FN \rightarrow F(M \otimes N) \leftrightarrow$ universal map $F(M) \sqcup F(N) \rightarrow F(M \sqcup N)$.
- Solution We see that then F strong \Rightarrow CMon(F) preserves coproducts.

Variants:

2-comonad T	Relaxing the Range	Rebranding T	Coalgebras
CMon(-)	\mathbf{SMCat}^{lax}	$Fun^{lax}(*,-)$	\mathbf{Cat}^{\sqcup}
CComon(-)	$\mathbf{SMCat}^{\mathrm{colax}}$	$Fun^{colax}(*,-)$	\mathbf{Cat}^{\sqcap}
CBimon(-)	\mathbf{SMCat}^{bilax}	$Fun^{bilax}(*,-)$	\mathbf{Cat}^\oplus

To sum it up:

- **SMCat** = commutative pseudomonoids in **Cat**.
- We can try to replace the 2-theory for commutative pseudomonoids by any Lawvere 2-theory T.
- Solution Need to define lax, colax (even bilax?) morphisms.
- Some commutativity condition on T ("operations are homomorphisms").

Setting the stage for general \mathbb{T} :

- Setting: Lawvere 2-theories, their models in Cat.
- Models come with notions of strict, pseudo, lax, colax, bilax homomorphisms.
- **(a)** We obtain $\operatorname{Hom}^{\operatorname{lax}}(*, -) \colon \operatorname{\mathsf{Mod}}(\mathbb{T}) \to \operatorname{\mathbf{Cat}}$ and variants.

Commutativity condition:

- O Pseudocommutativity for 2-theories.
- Item Hom^{lax}(*, -) promoted to an endo-2-functor.

Stronger: closed multicategory structure on $\mathsf{Mod}(\mathbb{T})$ for bi/co/lax maps.

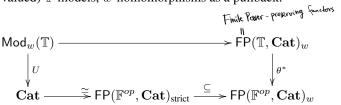
Putting it all together:

- A formal Yoneda-type proof of 2-comonadicity.
- Idempotence, identifying algebras using Eckmann-Hilton-based ideas.

Lawvere theory

Define Lawvere 2-theory to be an identity-on-objects 2-functor θ : $\mathbb{F}^{op} \to \mathbb{T}$.

For any $w \in \{\text{strict, pseudo, lax, colax}\}$, we define the 2-category $Mod_w(\mathbb{T})$ of (Cat-valued) \mathbb{T} -models, w-homomorphisms as a pullback:



IF := shelleton of FinSet

A B A A B A

Idea: for any model X, we want all the operations $X^m \to X^n$ to be pseudo-homomorphisms of models.

Syntactic solution for 1-theories

For any $\alpha \colon m \to n, \beta \colon k \to l$ in \mathbb{T} , we have a commutative square:

Formally: certain commutative monoid structure $\mathbb{T} \times \mathbb{T} \to \mathbb{T} \leftarrow *$.

Idea: for any model X, we want all the operations $X^m \to X^n$ to be pseudo-homomorphisms of models.

Syntactic solution for /-theories

For any $\alpha \colon m \to n, \beta \colon k \to l$ in \mathbb{T} , we have a commutative square:

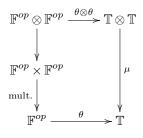
$$\begin{array}{ccc} m \cdot k & \xrightarrow{m \cdot \beta} & m \cdot l & \sum_{\alpha \in k} & \text{satisfying some} \\ \alpha \cdot k & \sum_{n \cdot k} & \mu \cdot l & \text{coherence conditions} \\ n \cdot k & \xrightarrow{n \cdot \beta} & n \cdot l & \end{array}$$

Formally: certain commutative monoid structure $\mathbb{T} \bigotimes \mathbb{T} \to \mathbb{T} \leftarrow *$.

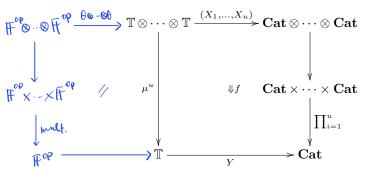
Pseudocommutativity

Let \mathbb{T} be a Lawvere 2-theory. A pseudocommutativity on \mathbb{T} consists of a stucture (\mathbb{T}, μ, u) of a monoid in $(\mathbf{Cat}, \otimes_{\mathrm{Gray}}, *)$ on \mathbb{T} such that

- μ preserves products in each variable,
- the composite F^{op} ⊗ T ^{θ⊗} T ⊗ T ^μ → T factors through the canonical map F^{op} ⊗ T → F^{op} × T (and the same holds for the symmetrical map T ⊗ F^{op} → T),
- the following commutes (where "mult." is the usual multiplication of natural numbers) and u(*) = 1.



Let \mathbb{T} be a pseudocommutative Lawvere 2-theory, X_1, \ldots, X_u, Y are \mathbb{T} -models in **Cat**. Then a lax \mathbb{T} -multimap $X_1, \ldots, X_n \to Y$ is a lax natural transformation f



such that the precomposition with the blue square is 2-natural.

∃ → ∢ ∃ → .

Thanks!

7 F 3x= 17 * 24 13 7-1 10x 30 915 E-2 2.x 35 7y= 7xE 2 5 -92 4 16 4 3<

Tomáš Perutka

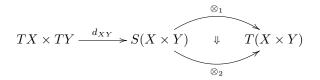
Generalized Fox's Theorem and pseudocommutativity

Connection to 2-monads

Corresponding notion of a pseudocommutativity for 2-monads¹, involving (co)strengths, 7 axioms, and the following invertible 2-cells:

$$\begin{array}{c|c} TA \times TB & \stackrel{t^*}{\longrightarrow} T(A \times TB) & \stackrel{Tt}{\longrightarrow} T^2(A \times B) \\ \downarrow & \downarrow \\ & \downarrow \\ T(TA \times B) & \stackrel{Tt^*}{\longrightarrow} T^2(A \times B) & \stackrel{\mu}{\longrightarrow} T(A \times B) \end{array}$$

If $TX = \int_{m}^{n} X^m \mathbb{T} m$ corresponds to a Lawvere theory \mathbb{T} , we have a monad $SX = \int_{m}^{m} X^{mn} \mathbb{T} m \times \mathbb{T} n$, γ_{XY} can be rewritten as



¹M. Hyland, J. Power: *Pseudo-commutative monads and pseudo-closed 2-categories*, JPAA 175, p. 141-185, 2002.