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Classical Fox Theorem

Thm. (baby Fox)

Tensor product of commutative rings is their coproduct.

Thm. (adult Fox)

For any symmetric monoidal category (C, ®, I), tensor product lifts to the
category CMon(C) and equips it with a cocartesian monoidal structure.

| A

Thm. (formal Fox)

CMon(—): SMCat — SMCat is an idempotent 2-comonad and the
(inclusion of the) full sub-2-category of coalgebras can be identified with
Cat” — SMCat. -~

/-tm*s with Kwk wfe 0&\‘5\ .Mvil_ monsidall als
+ Groduck - PeeRe by fumeyevs o shong Sgmintkric mamordel, Sumclorg
o nedrad, tramstomakions 0 wonaidol adural AvemsSormalions

Tom4s Perutka Generalized Fox’s Theorem and pseudocommutativity



Why is this true?

For any symmetric monoidal category (C, ®, I), tensor product lifts to the
category CMon(C) and equips it with a cocartesian monoidal structure.

Sketch of the proof:
@ For M, N € CMon(C), M ® N carries a structure of commutative
monoid as well. (Need symmetric monoidal categories!) Q’H\DL‘/\ N\
@ Tensor product is a coproduct in CMon(C): need the algebraic \ \é \ As4

operations to be homomorphisms!
mun N

M ! N
n N

g9
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Lax Fox to rule them all

Lemma (folklore?)

CMon(—) extends to an idempotent 2-comonad on SMCat'™* and the
coalgebras are: cats with finite coproducts, all functors, natural
transformations.

Sketch of the proof:
@ Lax functor F': C — D lifts to CMon(C) — CMon(D), in fact:
CMon(C) = Fun™(x, ).
@ Laxator FM @ FN - F(M ® N) <
universal map F(M) U F(N) — F(M UN).
@ We see that then F strong = CMon(F’) preserves coproducts.
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How to generalize?

Variants:
2-comonad 7' | Relaxing the Range | Rebranding T | Coalgebras
CMon(—) SMCat'™ Fun'®® (s, —) Cat”
CComon(—) SMCat* Fun®®®(x, =) | Cat"
CBimon(—) SMCat"™ Fun®a® (5, —) Cat®

To sum it up:
@ SMCat = commutative pseudomonoids in Cat.

© We can try to replace the 2-theory for commutative pseudomonoids by
any Lawvere 2-theory T.

© Need to define lax, colax (even bilax?) morphisms.

@ Some commutativitycondition on T (“operations are
homomorphisms”).
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Outline

Setting the stage for general T:
@ Setting: Lawvere 2-theories, their models in Cat.

@ Models come with notions of strict, pseudo, lax, colax, bilax
homomorphisms.

@ We obtain Hom'™ (, —): Mod(T) — Cat and variants.
Commutativity condition:

@ Pseudocommutativity for 2-theories.

Q Homla"‘(*7 —) promoted to an endo-2-functor.

@ Stronger: closed multicategory structure on Mod(T) for bi/co/lax maps.
Putting it all together:

Q@ A formal Yoneda-type proof of 2-comonadicity.

© Idempotence, identifying algebras using Eckmann-Hilton-based ideas.
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Some proper definitions

[F= daalidon of FanSet

Lawvere theory

Define Lawvere 2-theory to be an identity-on-objects 2-functor : F°? — T.

For any w € {strict, pseudo, lax, colax }, we define the 2-category Mod,, (T)
of (Cat-valued) T-models, w-homomorphisms as a pullback:

R cdovs
Fcde Voger - g3 -

I\
Mod,, (T) FP(T, Cat),,

lU |+

Cat 2 FP(F?, Cat)yie ——> FP(F°?, Cat),,
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Pseudocommutativity

Idea: for any model X, we want all the operations X™ — X" to be
pseudo-homomorphisms of models.

Syntactic solution for 1-theories

Forany a: m — n, f: k — lin T, we have a commutative square:

m kP

W

n-k——sn-I
n-B

Formally: certain commutative monoid structure T x T — T < x.
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Pseudocommutativity

Idea: for any model X, we want all the operations X™ — X" to be
pseudo-homomorphisms of models.

Syntactic solution for .-theories

Forany a: m — n, f: k — lin T, we have a commutative square:

m k" m 1 2«(5 S"hs%‘é”'“‘sgm
a.ki zu(o R la‘l Wheromer ConA s

n-k——s=n-I
n-B

Formally: certain commutative monoid structure TQT — T < x.
Gr
&r}
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Pseudocommutativity

Let T be a Lawvere 2-theory. A pseudocommutativty on T consists of a
stucture (T, 1, ) of a monoid in (Cat, ®gray, *) on T such that

@ pu preserves products in each variable,
@ the composite F? @ T Y9, T T 2 T factors through the canonical

map F? @ T — F°? x T (and the same holds for the symmetrical map
TRF? —T),

@ the following commutes (where “mult.” is the usual multiplication of
natural numbers) and u(x) = 1.

FPRQF? ——TT
FoP x F°P Iz

mult. l
[/

FP —— =T
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Lax multimorphisms

Let T be a pseudocommutative Lawvere 2-theory, X, ..., X,,Y are
T-models in Cat. Then a lax T-multimap X1, ..., X,, = Y is a lax natural
transformation f

HLDP®“'®R09 e&'%>T®...®TM>Cat®...®Cat
op l i 1 u
T x - <[ o Iz 4f  Catx---x Cat
= I,
R:OP >T v Cat

such that the precomposition with the blue square is 2-natural.
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Thanks!
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Connection to 2-monads

Corresponding notion of a pseudocommutativity for 2-monads', involving
(co)strengths, 7 axioms, and the following invertible 2-cells:

TA x TB4>T(A x TB) — ‘> T2(A x B)

tl UvaB i#

T(TA x B) ?TQ(A x B) ——T(A x B)

fTX = [ " X™ T m corresponds to a Lawvere theory T, we have a monad
SX = fm’n XM Tm x Tn, vxy can be rewritten as

M. Hyland, J. Power: Pseudo-commutative monads and pseudo-closed 2-categories, JPAA
175, p. 141-185, 2002.
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