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Classical Fox Theorem

Thm. (baby Fox)

Tensor product of commutative rings is their coproduct.

Thm. (adult Fox)

For any symmetric monoidal category (C,⊗, I), tensor product lifts to the
category CMon(C) and equips it with a cocartesian monoidal structure.

Thm. (formal Fox)

CMon(−) : SMCat→ SMCat is an idempotent 2-comonad and the
(inclusion of the) full sub-2-category of coalgebras can be identified with
Catt → SMCat.

Tomáš Perutka Generalized Fox’s Theorem and pseudocommutativity



Why is this true?

Thm. (adult Fox)

For any symmetric monoidal category (C,⊗, I), tensor product lifts to the
category CMon(C) and equips it with a cocartesian monoidal structure.

Sketch of the proof:
1 For M,N ∈ CMon(C), M ⊗N carries a structure of commutative

monoid as well. (Need symmetric monoidal categories!)
2 Tensor product is a coproduct in CMon(C): need the algebraic

operations to be homomorphisms!

M

1⊗u
��

f

""
M ⊗M ′

f⊗g // N ⊗N m // N

M ′

u⊗1

OO

g

<<
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Lax Fox to rule them all

Lemma (folklore?)

CMon(−) extends to an idempotent 2-comonad on SMCatlax and the
coalgebras are: cats with finite coproducts, all functors, natural
transformations.

Sketch of the proof:
1 Lax functor F : C → D lifts to CMon(C)→ CMon(D), in fact:

CMon(C) = Funlax(∗, C).
2 Laxator FM ⊗ FN → F (M ⊗N)↔

universal map F (M) t F (N)→ F (M tN).
3 We see that then F strong⇒ CMon(F ) preserves coproducts.
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How to generalize?

Variants:

2-comonad T Relaxing the Range Rebranding T Coalgebras

CMon(−) SMCatlax Funlax(∗,−) Catt

CComon(−) SMCatcolax Funcolax(∗,−) Catu

CBimon(−) SMCatbilax Funbilax(∗,−) Cat⊕

To sum it up:
1 SMCat = commutative pseudomonoids in Cat.
2 We can try to replace the 2-theory for commutative pseudomonoids by

any Lawvere 2-theory T.
3 Need to define lax, colax (even bilax?) morphisms.
4 Some commutativitycondition on T (”operations are

homomorphisms”).
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Outline

Setting the stage for general T:
1 Setting: Lawvere 2-theories, their models in Cat.
2 Models come with notions of strict, pseudo, lax, colax, bilax

homomorphisms.
3 We obtain Homlax(∗,−) : Mod(T)→ Cat and variants.

Commutativity condition:
1 Pseudocommutativity for 2-theories.
2 Homlax(∗,−) promoted to an endo-2-functor.
3 Stronger: closed multicategory structure on Mod(T) for bi/co/lax maps.

Putting it all together:
1 A formal Yoneda-type proof of 2-comonadicity.
2 Idempotence, identifying algebras using Eckmann-Hilton-based ideas.
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Some proper definitions

Lawvere theory

Define Lawvere 2-theory to be an identity-on-objects 2-functor θ : Fop → T.

For any w ∈ {strict, pseudo, lax, colax}, we define the 2-category Modw(T)
of (Cat-valued) T-models, w-homomorphisms as a pullback:

Modw(T) //

U

��

FP(T,Cat)w

θ∗

��
Cat ' // FP(Fop,Cat)strict

⊆ // FP(Fop,Cat)w
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Pseudocommutativity

Idea: for any model X , we want all the operations Xm → Xn to be
pseudo-homomorphisms of models.

Syntactic solution for 1-theories

For any α : m→ n, β : k → l in T, we have a commutative square:

m · k
m·β //

α·k
��

m · l

α·l
��

n · k
n·β

// n · l

Formally: certain commutative monoid structure T×T→ T← ∗.
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Pseudocommutativity

Let T be a Lawvere 2-theory. A pseudocommutativty on T consists of a
stucture (T, µ, u) of a monoid in (Cat,⊗Gray, ∗) on T such that

1 µ preserves products in each variable,

2 the composite Fop⊗T θ⊗−−→ T⊗T µ−→ T factors through the canonical
map Fop⊗T→ Fop×T (and the same holds for the symmetrical map
T⊗Fop → T),

3 the following commutes (where “mult.” is the usual multiplication of
natural numbers) and u(∗) = 1.

Fop⊗Fop θ⊗θ //

��

T⊗T

µ

��

Fop×Fop

mult.
��

Fop θ // T
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Lax multimorphisms

Let T be a pseudocommutative Lawvere 2-theory, X1, . . . , Xu, Y are
T-models in Cat. Then a lax T-multimap X1, . . . , Xn → Y is a lax natural
transformation f

T⊗ · · · ⊗ T
(X1,...,Xu) //

µu

��

⇓f

Cat⊗ · · · ⊗Cat

��
Cat× · · · ×Cat∏u

i=1

��
T

Y
// Cat

such that the precomposition with the blue square is 2-natural.

Tomáš Perutka Generalized Fox’s Theorem and pseudocommutativity



Thanks!
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Connection to 2-monads

Corresponding notion of a pseudocommutativity for 2-monads1, involving
(co)strengths, 7 axioms, and the following invertible 2-cells:

TA× TB t∗ //

t

��

T (A× TB) Tt // T 2(A×B)

µ

��
T (TA×B)

Tt∗
// T 2(A×B)

µ
//

⇓γAB

T (A×B)

If TX =
∫ n

Xm Tm corresponds to a Lawvere theory T, we have a monad
SX =

∫m,n
Xmn Tm× Tn, γXY can be rewritten as

TX × TY dXY // S(X × Y )

⊗1

%%

⊗2

99
T (X × Y )⇓

1M. Hyland, J. Power: Pseudo-commutative monads and pseudo-closed 2-categories, JPAA
175, p. 141-185, 2002.
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