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Introduction - A representation theorem

Theorem (Joyal)

For any small Heyting category H, there is a small category C and a
conservative Heyting functor H ↪→ SetC.
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Introduction - A representation theorem

Theorem (Joyal)

For any small Heyting category H, there is a small category C and a
conservative Heyting functor H ↪→ SetC.

A model theoretic proof has been presented by Makkai and Reyes in 1977.

Goal : to provide a categorical approach
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Introduction - A representation theorem

Posetal case : Heyting algebras
For any Heyting algebra H, there is a poset X and an injective
homomorphism of Heyting algebras H ↪→ 2X

Stone representation theorem
For any Boolean algebra B, there is a set X and an injective Boolean
homomorphism B ↪→ 2X
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Introduction - A representation theorem

Representation theorems ⇔ completeness theorems

through the construction of syntactic categories, build from theories.

• For any coherent theory T, there is a coherent category CT such that

Coh (CT,Set) ≃ Mod(T)
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Introduction - Heyting categories

A finitely complete category C is regular if and only if :

any arrow in C factorizes as a regular epimorphism followed by a
monomorphism;
these factorizations are pullback-stable.

A coherent category is a regular category in which posets of
subobjects Sub(a) have finite unions (i.e coproducts) and each
pullback functor f−1 : Sub(b) → Sub(a) preserves them.
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Introduction - Heyting categories

A Heyting category is a coherent category in which for each map
f : a → b, the pullback functor f−1 : Sub(b) → Sub(a) has a right
adjoint ∀f :

Sub(b) Sub(a)

f−1

∀f
⊣

Example : Any presheaf category. In particular, PSh(Cop) = SetC
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Introduction - Deligne’s theorem

Let H be a small coherent category.

Theorem

For any morphism f : a → b in H, if M(a) ∼= M(b) for all coherent
functor M : H → Set, then f is an isomorphism.
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Introduction - Deligne’s theorem

Let H be a small coherent category.

Theorem

For any morphism f : a → b in H, if M(a) ∼= M(b) for all coherent
functors M : H → Set, then f is an isomorphism.

⇒ Gödel completeness for first-order logic
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Sketch of the proof
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Sketch of the proof

Notations :

· Lex(C,D) : category of left exact functors between finitely complete
categories C and D

· Coh(C,D) : category of coherent functors between coherent
categories C and D
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Sketch of the proof

Theorem (Joyal)

For any small Heyting category H, there is a small category C and a
conservative Heyting functor H ↪→ SetC.

For the proof, we show that C can be taken to be the category of
coherent functors Coh(H,Set) and that the functor is given by :

ev : H SetC

a (F 7→ F (a))

b (F 7→ F (b))

f ev(f)F=Ff
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Sketch of the proof

Conservativity of the functor : Deligne’s theorem

Coherence of the functor : C = Coh(H,Set)

Preservation of the Heyting structure : we need to show that for any
f : a → b, and for any u ∈ Sub(a),

∀ev(f)(ev(u)) = ev(∀f (u))

On objects : for any coherent functor M ∈ C, we need to show that

∀ev(f)(ev(u))(M) = M(∀f (u))

.
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Sketch of the proof

Using the definition of the universal quantification in presheaves and
the definition of ev :

∀ev(f)(ev(u))(M) = {x ∈ M(b) | for all h : M → N in Coh(H,Set),

for all y ∈ N(a), if Nf(y) = hb(x) then y ∈ N(u)}

Therefore, to show ∀ev(f)(ev(u))(M) ⊆ M(∀f (u)), we assume
x ∈ M(b), x /∈ M(∀fu) and we need to show that :

there exists N ∈ Coh(H,Set), h : M → N and y ∈ N(a) such that
Nf(y) = hb(x) but y /∈ N(u)
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Sketch of the proof

We have f : a → b, u ∈ Sub(a) and M ∈ Coh(H,Set)

Suppose x ∈ M(b) but x /∈ M(∀fu)

y(∀fu)

yb

ya

yu

x

yf

WTS : there exists N ∈ Coh(H,Set), h : M → N and y ∈ N(a) such
that Nf(y) = hb(x) but y /∈ N(u)
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Sketch of the proof

We have f : a → b, u ∈ Sub(a) and M ∈ Coh(H,Set)

Suppose x ∈ M(b) but x /∈ M(∀fu)

y(∀fu)

yb M

ya N

yu

/

x

yf h

WTS : there exists N ∈ Coh(H,Set), h : M → N and y ∈ N(a) such
that Nf(y) = hb(x) but y /∈ N(u)

22/54



Sketch of the proof
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First step : Finite limit preserving functors

yb

ya

x

yf h̃
ỹ⌜
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First step : Finite limit preserving functors

Since H has finite limits, the category Lex(H,Set) is cocomplete
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First step : Finite limit preserving functors

Since H has finite limits, the category Lex(H,Set) is cocomplete

yb M

ya Ñ

x

yf h̃

ỹ ⌜

Ñf(ỹ) = h̃b(x) by commutation of the diagram

ỹ /∈ Ñ(u) by our assumption x /∈ M(∀fu) and the adjunction
f−1 ⊣ ∀f
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First step : Finite limit preserving functors

Since H has finite limits, the category Lex(H,Set) is cocomplete
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First step : Finite limit preserving functors
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Second step : A new category H(Ñ)
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Second step : A new category H(Ñ)

H(Ñ)op ↪→ Ñ/Lex(H,Set) is the full subcategory

Its object are pushouts of maps in H, e.g. :

yd Ñ

yc Y
⌜

for a map c → d in H.
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Second step : A new category H(Ñ)

Ñ ∈ Lex(H,Set) ⇒ Ñ ∼= colimi∈I yÑi for I a filtered category.

H(Ñ) ≃ colimi∈I H/Ñi

Lemma

A filtered colimit of coherent categories and coherent functors between
them is coherent.

⇒ H(Ñ) is coherent.
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Second step : A new category H(Ñ)

Ñ ∈ Lex(H,Set) ⇒ Ñ ∼= colimi∈I yÑi for I a filtered category.

H(Ñ) ≃ colimi∈I H/Ñi

Lemma

A filtered colimit of coherent categories and coherent functors between
them is coherent.

⇒ H(Ñ) is coherent.

Moreover, Coh(H(Ñ),Set) ≃ Ñ/Coh(H,Set)
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Third step : Deligne’s theorem, again
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Third step : Deligne’s theorem, again

There is an object Y in H(Ñ) :

ya Ñ

yu Y

ỹ

⌜
such that Y ≇ Ñ .

Theorem (Deligne)

For any morphism f : a → b in H, if M(a) ∼= M(b) for all M ∈ Coh(H,Set),
then f is an isomorphism.
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There exists N ∈ Coh(H(Ñ),Set) such that N(Y ) ≇ N(Ñ)
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Third step : Deligne’s theorem, again

There is an object Y in H(Ñ) :
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yu Y

ỹ

⌜
such that Y ≇ Ñ .

Theorem (Deligne)

For any morphism f : a → b in H, if M(a) ∼= M(b) for all M ∈ Coh(H,Set),
then f is an isomorphism.

There exists N ∈ Coh(H(Ñ),Set) such that N(Y ) ≇ N(Ñ)

Since Coh(H(Ñ),Set) ≃ Ñ/Coh(H,Set), we have

Ñ N

Y

/
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Third step : Deligne’s theorem, again

yb M

ya Ñ N

yu Y

x

yf h̃

ỹ ⌜

⌜
/
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Third step : Deligne’s theorem, again

yb M

ya Ñ N

yu Y

x
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h
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⌜
/
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Third step : Deligne’s theorem, again
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Third step : Deligne’s theorem, again

yb M

ya N

yu

x

yf
h

y

/

We have N ∈ Coh(H,Set), h : M → N and y ∈ N(a) such that
Nf(y) = hb(x) but y /∈ N(u)
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Completeness results
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Completeness results

For any intuitionistic first-order theory T, one can construct its syntactic
category CT.

CT is a Heyting category.

CT contains a universal model U such that a formula (of IFOL) is
provable from the axioms of T if and only if this formula holds in U .

T proves (Γ | φ) iff U |= (Γ | φ)
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Completeness results

Theorem (Kripke Completeness of IFOL, 1965)

If a formula of IFOL holds in every Kripke model, then it is provable in
Heyting predicate calculus.

• Kripke semantics agree with semantics in presheaves of the form
SetK , with K a poset

• Diaconescu cover : There exists a poset K and a conservative,
Heyting functor SetC ↪→ SetK
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Completeness results

Let T be an IFO theory, consider Joyal’s theorem for its syntactic category

ev : CT ↪→ SetC↪→ SetK

with C = Coh(CT,Set).

• Since ev is a Heyting functor, the image of the universal model U in
CT under ev is again a model ev(U) of T.

• By conservativity of ev : if a formula holds in the model ev(U) it also
holds in the model U , and therefore is provable.
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