Joyal's representation theorem for Heyting categories

Julia Morin

Master's thesis supervised by Steve Awodey and Mathieu Anel Joint work with Reid Barton and Jonas Frey

Table of Contents

Introduction

- A representation theorem
- Heyting categories
- Deligne's theorem

2 Sketch of the proof

3 Completeness results

Theorem (Joyal)

For any small Heyting category \mathcal{H} , there is a small category \mathbb{C} and a conservative Heyting functor $\mathcal{H} \hookrightarrow \mathbf{Set}^{\mathbb{C}}$.

Theorem (Joyal)

For any small Heyting category \mathcal{H} , there is a small category \mathbb{C} and a conservative Heyting functor $\mathcal{H} \hookrightarrow \mathbf{Set}^{\mathbb{C}}$.

A model theoretic proof has been presented by Makkai and Reyes in 1977.

Goal : to provide a categorical approach

• Posetal case : Heyting algebras

For any Heyting algebra \mathcal{H} , there is a poset X and an injective homomorphism of Heyting algebras $\mathcal{H} \hookrightarrow 2^X$

Stone representation theorem

For any Boolean algebra \mathcal{B} , there is a set X and an injective Boolean homomorphism $\mathcal{B} \hookrightarrow 2^X$

Representation theorems \Leftrightarrow completeness theorems

through the construction of syntactic categories, build from theories.

Representation theorems \Leftrightarrow completeness theorems

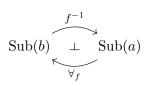
through the construction of syntactic categories, build from theories.

 $\bullet\,$ For any coherent theory $\mathbb T,$ there is a coherent category $\mathcal C_{\mathbb T}$ such that

 $\mathrm{Coh}\left(\mathcal{C}_{\mathbb{T}},\mathbf{Set}\right)\simeq\mathrm{Mod}(\mathbb{T})$

- A finitely complete category ${\mathcal C}$ is regular if and only if :
 - $\bullet\,$ any arrow in ${\mathcal C}$ factorizes as a regular epimorphism followed by a monomorphism;
 - these factorizations are pullback-stable.
- A coherent category is a regular category in which posets of subobjects Sub(a) have finite unions (i.e coproducts) and each pullback functor f⁻¹: Sub(b) → Sub(a) preserves them.

• A *Heyting category* is a coherent category in which for each map $f: a \to b$, the pullback functor $f^{-1}: \operatorname{Sub}(b) \to \operatorname{Sub}(a)$ has a right adjoint \forall_f :



Example : Any presheaf category. In particular, $PSh(\mathbb{C}^{op}) = \mathbf{Set}^{\mathbb{C}}$

Let ${\mathcal H}$ be a small coherent category.

Theorem

For any morphism $f : a \to b$ in \mathcal{H} , if $M(a) \cong M(b)$ for all coherent functor $M : \mathcal{H} \to \mathbf{Set}$, then f is an isomorphism.

Let \mathcal{H} be a small coherent category.

Theorem

For any morphism $f : a \to b$ in \mathcal{H} , if $M(a) \cong M(b)$ for all coherent functors $M : \mathcal{H} \to \mathbf{Set}$, then f is an isomorphism.

 \Rightarrow Gödel completeness for first-order logic

◆□ ▶ < 圕 ▶ < ≧ ▶ < ≧ ▶ ● 12/54

Notations :

- $\cdot~ Lex(\mathcal{C},\mathcal{D})$: category of left exact functors between finitely complete categories $\mathcal C$ and $\mathcal D$
- $\cdot~{\rm Coh}(\mathcal{C},\mathcal{D})$: category of coherent functors between coherent categories $\mathcal C$ and $\mathcal D$

Theorem (Joyal)

For any small Heyting category \mathcal{H} , there is a small category \mathbb{C} and a conservative Heyting functor $\mathcal{H} \hookrightarrow \mathbf{Set}^{\mathbb{C}}$.

For the proof, we show that \mathbb{C} can be taken to be the category of coherent functors $\operatorname{Coh}(\mathcal{H}, \mathbf{Set})$ and that the functor is given by :

$$ev: \mathcal{H} \longrightarrow \operatorname{Set}^{\mathbb{C}}$$

$$a \longmapsto (F \mapsto F(a))$$

$$\downarrow f \qquad \qquad \downarrow^{ev(f)_F = Ff}$$

$$b \longmapsto (F \mapsto F(b))$$

- Conservativity of the functor : Deligne's theorem
- Coherence of the functor : $\mathbb{C}=\mathrm{Coh}(\mathcal{H},\mathbf{Set})$
- Preservation of the Heyting structure : we need to show that for any $f: a \to b$, and for any $u \in Sub(a)$,

$$\forall_{ev(f)}(ev(u)) = ev(\forall_f(u))$$

On objects : for any coherent functor $M \in \mathbb{C}$, we need to show that

$$\forall_{ev(f)}(ev(u))(M) = M(\forall_f(u))$$

• Using the definition of the universal quantification in presheaves and the definition of ev :

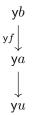
 $\forall_{ev(f)}(ev(u))(M) = \{ x \in M(b) \mid \text{ for all } h : M \to N \text{ in } \operatorname{Coh}(\mathcal{H}, \mathbf{Set}),$ for all $y \in N(a)$, if $Nf(y) = h_b(x)$ then $y \in N(u) \}$

• Therefore, to show $\forall_{ev(f)}(ev(u))(M) \subseteq M(\forall_f(u))$, we assume $x \in M(b)$, $x \notin M(\forall_f u)$ and we need to show that :

there exists $N \in Coh(\mathcal{H}, \mathbf{Set})$, $h: M \to N$ and $y \in N(a)$ such that $Nf(y) = h_b(x)$ but $y \notin N(u)$

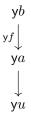
We have $f: a \to b$, $u \in \operatorname{Sub}(a)$ and $M \in \operatorname{Coh}(\mathcal{H}, \mathbf{Set})$

We have $f: a \to b, u \in Sub(a)$ and $M \in Coh(\mathcal{H}, \mathbf{Set})$



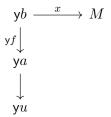
We have $f: a \to b, u \in Sub(a)$ and $M \in Coh(\mathcal{H}, \mathbf{Set})$

Suppose $x \in M(b)$ but $x \notin M(\forall_f u)$



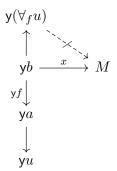
We have $f: a \to b$, $u \in Sub(a)$ and $M \in Coh(\mathcal{H}, \mathbf{Set})$

Suppose $x \in M(b)$ but $x \notin M(\forall_f u)$



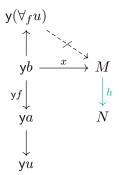
We have $f: a \to b$, $u \in \mathrm{Sub}(a)$ and $M \in \mathrm{Coh}(\mathcal{H}, \mathbf{Set})$

Suppose $x \in M(b)$ but $x \notin M(\forall_f u)$



We have $f: a \to b$, $u \in \mathrm{Sub}(a)$ and $M \in \mathrm{Coh}(\mathcal{H}, \mathbf{Set})$

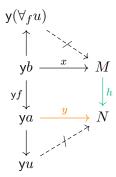
Suppose $x \in M(b)$ but $x \notin M(\forall_f u)$



WTS : there exists $N \in Coh(\mathcal{H}, \mathbf{Set})$, $h: M \to N$

We have $f: a \to b$, $u \in \operatorname{Sub}(a)$ and $M \in \operatorname{Coh}(\mathcal{H}, \mathbf{Set})$

Suppose $x \in M(b)$ but $x \notin M(\forall_f u)$



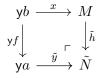
WTS : there exists $N \in Coh(\mathcal{H}, \mathbf{Set})$, $h: M \to N$ and $y \in N(a)$ such that $Nf(y) = h_b(x)$ but $y \notin N(u)$

First step : Finite limit preserving functors

・ロト < 日 ト < 目 ト < 目 ト < 目 ト 目 の Q ()
24/54

 \bullet Since ${\cal H}$ has finite limits, the category ${\rm Lex}({\cal H}, {\bf Set})$ is cocomplete

• Since \mathcal{H} has finite limits, the category $Lex(\mathcal{H}, \mathbf{Set})$ is cocomplete

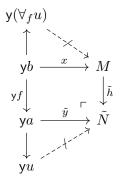


• Since \mathcal{H} has finite limits, the category $\operatorname{Lex}(\mathcal{H}, \mathbf{Set})$ is cocomplete

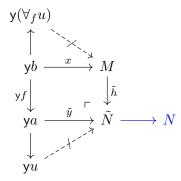
$$\begin{array}{ccc} \mathsf{y}b & \xrightarrow{x} & M \\ \mathsf{y}f & & & \downarrow \\ \mathsf{y}a & \xrightarrow{\tilde{y}} & \tilde{N} \end{array}$$

- $\tilde{N}f(\tilde{y}) = \tilde{h}_b(x)$ by commutation of the diagram
- $\tilde{y} \notin \tilde{N}(u)$ by our assumption $x \notin M(\forall_f u)$ and the adjunction $f^{-1} \dashv \forall_f$

 \bullet Since ${\cal H}$ has finite limits, the category ${\rm Lex}({\cal H}, {\bf Set})$ is cocomplete



 \bullet Since ${\cal H}$ has finite limits, the category ${\rm Lex}({\cal H}, {\bf Set})$ is cocomplete



Second step : A new category $\mathcal{H}(\tilde{N})$

- $\mathcal{H}(\tilde{N})^{op} \hookrightarrow \tilde{N}/\operatorname{Lex}(\mathcal{H},\mathbf{Set})$ is the full subcategory
- \bullet Its object are pushouts of maps in $\mathcal H,$ e.g. :

for a map $c \to d$ in \mathcal{H} .

- $\tilde{N} \in \text{Lex}(\mathcal{H}, \mathbf{Set}) \Rightarrow \tilde{N} \cong \text{colim}_{i \in I} \, \mathsf{y} \tilde{N}_i$ for I a filtered category.
- $\mathcal{H}(\tilde{N}) \simeq \operatorname{colim}_{i \in I} \mathcal{H}/\tilde{N}_i$

Lemma

A filtered colimit of coherent categories and coherent functors between them is coherent.

 $\Rightarrow \mathcal{H}(\tilde{N})$ is coherent.

32/54

- $\tilde{N} \in \text{Lex}(\mathcal{H}, \mathbf{Set}) \Rightarrow \tilde{N} \cong \text{colim}_{i \in I} \, \mathsf{y} \tilde{N}_i$ for I a filtered category.
- $\mathcal{H}(\tilde{N}) \simeq \operatorname{colim}_{i \in I} \mathcal{H}/\tilde{N}_i$

Lemma

A filtered colimit of coherent categories and coherent functors between them is coherent.

 $\Rightarrow \mathcal{H}(\tilde{N})$ is coherent.

Moreover, $\operatorname{Coh}(\mathcal{H}(\tilde{N}), \operatorname{\mathbf{Set}}) \simeq \tilde{N} / \operatorname{Coh}(\mathcal{H}, \operatorname{\mathbf{Set}})$

<ロト<団ト<臣ト<臣ト 34/54

Third step : Deligne's theorem, again

Theorem (Deligne)

For any morphism $f : a \to b$ in \mathcal{H} , if $M(a) \cong M(b)$ for all $M \in \operatorname{Coh}(\mathcal{H}, \operatorname{Set})$, then f is an isomorphism.

Third step : Deligne's theorem, again

~ ...

Theorem (Deligne)

For any morphism $f : a \to b$ in \mathcal{H} , if $M(a) \cong M(b)$ for all $M \in \operatorname{Coh}(\mathcal{H}, \operatorname{Set})$, then f is an isomorphism.

• There exists $N \in \operatorname{Coh}(\mathcal{H}(\tilde{N}), \mathbf{Set})$ such that $N(Y) \ncong N(\tilde{N})$

• There is an object Y in $\mathcal{H}(\tilde{N})$: $\begin{array}{c} ya \xrightarrow{\tilde{y}} \tilde{N} \\ \downarrow & & \downarrow \\ & & \downarrow \\ & & & \downarrow \end{array}$

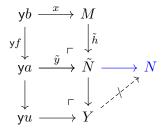
such that
$$Y \ncong \tilde{N}$$
.

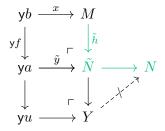
イロト イヨト イヨト 一日

Theorem (Deligne)

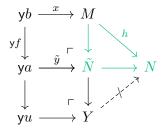
For any morphism $f : a \to b$ in \mathcal{H} , if $M(a) \cong M(b)$ for all $M \in \operatorname{Coh}(\mathcal{H}, \operatorname{Set})$, then f is an isomorphism.

- There exists $N \in \operatorname{Coh}(\mathcal{H}(\tilde{N}), \mathbf{Set})$ such that $N(Y) \ncong N(\tilde{N})$
- Since $\operatorname{Coh}(\mathcal{H}(\tilde{N}), \operatorname{\mathbf{Set}}) \simeq \tilde{N}/\operatorname{Coh}(\mathcal{H}, \operatorname{\mathbf{Set}})$, we have

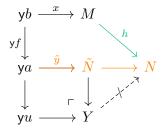




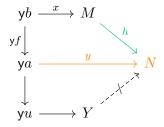
<ロト <回ト < Eト < Eト を E の Q (~ 39/54

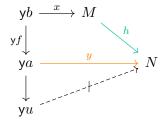


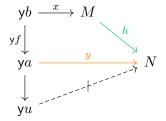
<ロ><回><回><目><目><目><目><目><目><目><<=>のへの 40/54



<ロト <回ト < Eト < Eト を E の Q (~ 41/54







We have $N \in Coh(\mathcal{H}, \mathbf{Set})$, $h: M \to N$ and $y \in N(a)$ such that $Nf(y) = h_b(x)$ but $y \notin N(u)$

Completeness results

 For any intuitionistic first-order theory $\mathbb T,$ one can construct its syntactic category $\mathcal C_{\mathbb T}.$

- $\mathcal{C}_{\mathbb{T}}$ is a Heyting category.
- $\mathcal{C}_{\mathbb{T}}$ contains a *universal model* U such that a formula (of IFOL) is provable from the axioms of \mathbb{T} if and only if this formula holds in U.

$$\mathbb{T}$$
 proves $(\Gamma \mid \varphi)$ iff $U \models (\Gamma \mid \varphi)$

Theorem (Kripke Completeness of IFOL, 1965)

If a formula of IFOL holds in every Kripke model, then it is provable in Heyting predicate calculus.

Theorem (Kripke Completeness of IFOL, 1965)

If a formula of IFOL holds in every Kripke model, then it is provable in Heyting predicate calculus.

• Kripke semantics agree with semantics in presheaves of the form \mathbf{Set}^K , with K a poset

Theorem (Kripke Completeness of IFOL, 1965)

If a formula of IFOL holds in every Kripke model, then it is provable in Heyting predicate calculus.

- Kripke semantics agree with semantics in presheaves of the form \mathbf{Set}^K , with K a poset
- Diaconescu cover : There exists a poset K and a conservative, Heyting functor Set^C → Set^K

Let $\ensuremath{\mathbb{T}}$ be an IFO theory, consider Joyal's theorem for its syntactic category

$$ev: \mathcal{C}_{\mathbb{T}} \hookrightarrow \mathbf{Set}^{\mathbb{C}}$$

with $\mathbb{C} = \operatorname{Coh}(\mathcal{C}_{\mathbb{T}}, \mathbf{Set}).$

Let $\ensuremath{\mathbb{T}}$ be an IFO theory, consider Joyal's theorem for its syntactic category

$$ev: \mathcal{C}_{\mathbb{T}} \hookrightarrow \mathbf{Set}^{\mathbb{C}} \hookrightarrow \mathbf{Set}^{K}$$

with $\mathbb{C} = \operatorname{Coh}(\mathcal{C}_{\mathbb{T}}, \mathbf{Set}).$

Let $\ensuremath{\mathbb{T}}$ be an IFO theory, consider Joyal's theorem for its syntactic category

$$ev: \mathcal{C}_{\mathbb{T}} \hookrightarrow \mathbf{Set}^{\mathbb{C}} \hookrightarrow \mathbf{Set}^{K}$$

with $\mathbb{C} = \operatorname{Coh}(\mathcal{C}_{\mathbb{T}}, \mathbf{Set}).$

• Since ev is a Heyting functor, the image of the universal model U in $\mathcal{C}_{\mathbb{T}}$ under ev is again a model ev(U) of \mathbb{T} .

Let ${\ensuremath{\mathbb T}}$ be an IFO theory, consider Joyal's theorem for its syntactic category

$$ev: \mathcal{C}_{\mathbb{T}} \hookrightarrow \mathbf{Set}^{\mathbb{C}} \hookrightarrow \mathbf{Set}^{K}$$

with $\mathbb{C} = \operatorname{Coh}(\mathcal{C}_{\mathbb{T}}, \mathbf{Set}).$

- Since ev is a Heyting functor, the image of the universal model U in $\mathcal{C}_{\mathbb{T}}$ under ev is again a model ev(U) of \mathbb{T} .
- By conservativity of ev: if a formula holds in the model ev(U) it also holds in the model U, and therefore is provable.

[Awo24] Steve Awodey. Lecture notes for Categorical Logic — Steve Awodey. 2024. URL: https://awodey.github.io/catlog/notes/. [Kri65] Saul A. Kripke. "Semantical Analysis of Intuitionistic Logic I". In: Studies in Logic and the Foundations of Mathematics 40 (C Jan. 1965), pp. 92–130. ISSN: 0049-237X. DOI: 10.1016/S0049-237X(08)71685-9. [MR77] Michael Makkai and Gonzalo E. Reyes. "First Order Categorical Logic". In: 611 (1977). DOI: 10.1007/BFB0066201. URL: http://link.springer.com/10.1007/BFb0066201.