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Two kinds of strictification

A monoidal structure is strict when the associator, left unitor and
right unitor consist of identity maps.

Strictifying a monoidal category means finding an equivalent
monoidal category that’s strict.

This is always possible.

Let C be a category. Strictifying a monoidal structure on C means
finding an isomorphic monoidal structure on C that’s strict.

When is this possible?
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For structured sets,
structure strictification isn’t straightforward

Schauenburg (2001) claimed that, on a category of structured sets,
any monoidal structure can be strictified.

This was incorrect, but his methods work in many cases.
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Counterexample

Let C be the category of sets with at most one element, and bijections.
Monoidal structure:

∅ ⊕ ∅ def
= ∅

∅ ⊕ {x} def
= {0}

{x} ⊕ ∅ def
= {0}

{x} ⊕ {y} def
= ∅

with ∅ as unit. It’s strictly associative and strictly symmetric.

A strictification □ would satisfy

({0}□{0})□{1} = {0}□({0}□{1})
∅□{1} = {0}□∅

{1} = {0}
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Label-bearing categories

A label-bearing category consists of the following:

1 A category C, with certain objects designated empty.
Requirement
Any isomorphism to or from an empty object is an identity.

2 For any thing x and object a, an isomorph (x · a, θa,x) of a.
Requirement
If a is nonempty, then x · a = y · b implies x = y.
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Examples of label-bearing categories

Set, Grp, Top. Take x · a def
= {x} × a.

Categories of structured sets.

Cop, for a label-bearing category C.∏
i∈I Ci, for label-bearing categories (Ci)i∈I .

An object is empty when all its components are.

Fam(C), for a category C.
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Results

Key result

On a label-bearing category,
any product-like or sum-like structure is strictifiable.

We need to define these notions.

Compositionality

Product-like structure on C gives one on Cop.

Sum-like structure on C gives one on Cop.

Product-like structures on (Ci)i∈I gives one on
∏

i∈I Ci.
Sum-like structures on (Ci)i∈I gives one on

∏
i∈I Ci.

Paul Blain Levy (University of Birmingham) Strictifying monoidal structure November 16, 2024 8 / 14



Results

Key result

On a label-bearing category,
any product-like or sum-like structure is strictifiable.

We need to define these notions.

Compositionality

Product-like structure on C gives one on Cop.

Sum-like structure on C gives one on Cop.

Product-like structures on (Ci)i∈I gives one on
∏

i∈I Ci.
Sum-like structures on (Ci)i∈I gives one on

∏
i∈I Ci.

Paul Blain Levy (University of Birmingham) Strictifying monoidal structure November 16, 2024 8 / 14



Product-like structure

On a label-bearing category C, a monoidal structure is product-like
when a⊗ b is empty if a or b is.

Why not require that a⊗ b is nonempty if a and b are?
Because this would exclude the product on Set2.

Why not require the unit to be nonempty?
Because this would exclude the product on Set0.
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Decomposing the unit

A monoid has indecomposable unit when
a⊗ b = I implies a = I and hence b = I.

Examples

1 Nonnegative reals under addition.

2 Any monoid where ⊗ is idempotent. Proof:

a⊗ b implies a = a⊗ I

= a⊗ a⊗ b

= a⊗ b

= I
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Sum-like structure

On a label-bearing category C, a monoidal structure is sum-like when:

The unit is empty.

a⊗ b is empty iff both a and b are.

The class monoid of empty objects has indecomposable unit.
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All monoidal structures?

Let C be a label-bearing category such that:

Every nonempty object is weakly terminal.

Every empty object is initial.

Every morphism to an empty object is from an empty object.

Then every monoidal structure on C can be strictified.

Examples include Set and Poset.

Don’t know about Rel or Bij or Set2 or Fam(Set).
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Warning: preservation of inclusions

On Set, the standard implementation of × and + preserve inclusions.

But no implementation of products preserves inclusions and is strict.

Likewise for sums.
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Conclusions

Many categories such as Set and Set2 and Fam(Set) are label-bearing.

On such a category, a monoidal structure that is either product-like or
sum-like can be strictified.

And for certain categories e.g. Set, this means any monoidal structure.

Bonus corollary

As a “category with two monoidal structures”,

(Set,×,+) is equivalent to one where both structures are strict.
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