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Pretorsion theories

Our plan and similar work in the literature

In this talk, we will discuss a generalization of the notion of pretorsion
theory to the context of infinity categories (here quasi-catégories). Many
crucial ideas, including the following, have already been discussed in the
literature.

@ The concept of pretorsion theory as a generalization of Dickson's
torsion theories (see [1]) has been developed extensively for
1-categories by Facchini, Finocchiaro, Gran, and others. See, for
instance, [2] and [3].

@ There is a notion of torsion theory for stable (oo, 1)—categories
introduced by Fiorenza and Loregian in [4] using t-structures.
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Pretorsion theories

Fundamental Definitions - Z-triviality

The ingredients for classical pretorsion theories:

Let C be a category, Z C C a subcategory, and f : A — B a morphism in
C.

Definition

f is Z—trivial if it factors through an object z € Z. In otherwords, if we
have the following commutative diagram:

f
A—— B
X V
)
Z
i,e. f=boa.
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Pretorsion theories

Fundamental Definitions - Z-(co)kernels

Definition

(2], [3] ) Let C be a category, Z C C a subcategory, and f : A — A’ a
morphism in C. The morphism ¢ : X — A is a Z—kernel of f if the
following properties hold:

@ The composition fe is a Z—trivial morphism.

@ Every time that A: Y — A is a morphism in C and the composition

f\ is Z—trivial, there exists a unique morphism X' : Y — X in C such
that A = e\

Note:
@ To obtain a Z—cokernel, one dualizes the above definition.
e If Z is &, one returns to the classical definition of (co)kernel.

@ There is no guarantee that such (co)kernels exist in a given category.
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Pretorsion theories

Fundamental Definitions: Short Z-exact sequence

Definition
[3], [2] A short Z—exact sequence

AlL,BE ¢

in a category C is a pair of morphisms f : A— B and g : B — C such
that f is a Z—kernel of g and g is a Z—kernel of f
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Pretorsion theories

Pretorsion theories

Definition

(Definition 2.6 of [3]) Let C be a category. A pretorsion theory (T, F) on
C consists of a pair of full replete subcategories T and F such that for

Z .= T NF, the following conditions are satisfied:

@ home(T,F) = Trivz(T,F) for every object T € T and F € F.
@ For each object B € C there exists a short Z—exact sequence

AL BE ¢

with Ae T and C € F.

Remark
e If Z = o, this structure is that of a torsion theory (see [1]).
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Pretorsion Theories on Quasi-categories

Version quasi-catégorique: Fundamental Definitions

Definition

Let C be a quasi-catégorie and Z C C a subcategory. A morphism
f:A— Bin Cis Z—trivial if there exists, for at least one z € Z two
morphismes a € C/, with source A and b € C,, with target B such that
f=boa.

Verification
Under the taking of the homotopy category hC of C, one recovers there
the 1—categorical version of Z—triviality.

Remark
One may also “go the other way” in a certain sense: with an additional
assumption, one can show that hZ triviality on hC translates to that on C.
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(Proof idea)

Proof:

Starting in C, we have that f ~ bo a. To put it in a different way, there is
at least one homotopy (2—morphism), X, up to higher homotopy, which
connects f and b o a. Under the taking of the homotopy category, then, f
and b o a are identified (the morphisms in hC are the homotopy classes of
the morphisms in C). In C, a 1—category, one has thus that f is also

hZ —trivial in the 1—categorical sense in that f = b o a (since they are
identified, and thus homotopic).
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QCs: Z-(co)kernels

Definition
Let C be an (oo, 1)—category, Z C C a subcategory, z and z’ objects of Z,
and g : A — B a morphism in C. The Z—kernel of g is the pullback (oo, 1)

ker(g) —— B
-
z » C

Dually, the Z—conoyau of a morphism f : B — C dans C is defined by a
pushout diagram.
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Pretorsion Theories on Quasi-categories

QCs: Short Z-exact sequences

Definition
Let C be a quasi-catégorie and Z C C a subcategory thereof. A short
Z—exact sequence

AS B,
consists of two morphisms ¢ : A — B and n: B — C such that e is a
Z—kernel of  and 7 is a Z—cokernel of e.
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Pretorsion Theories on Quasi-categories

QCs: Pretorsion Theories

Definition
A pretorsion theory on a quasi-catégorie C consists of a triple (T, F, Z) of

full, replete subcategories of C such that the following conditions are
fulfilled:

Q@ Home(T,F) = Trivz(T,F) for T €T and F € F.

@ For every object B € C there exists a short Z—exact sequence

TSBLF

with T €T and F € F.

@ Here we consider Z as any full, replete subcategory of C, a
generalization also interesting in the 1—categorical case. To return to
the classical case, take Z =T NF.

@ One may show that this structure passes to a 1—categorical
pretorsion theory, as it were, on hC.
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Pretorsion Theories on Quasi-categories

QCs: Properties of Pretorsion Theories 1

Definition

(Generalization of Definition 4.1 of [2]) Let C be a quasi-catégorie and

Z C C a full, nonempty subcategory thereof. A full replete subcategory

S C C is closed under extension by Z if, for every short Z—exact sequence
51 = X — S5 in C such that for 51, $5€ S and X any object in C, one
has X € S.

Proposition

(Generalization of proposition 4.2 of [2].) Let (T,F,Z) be a pretorsion
theory on a quasi-catégorie C such that Z:=TNF. Then, T, F, and Z
are all closed under extensions by Z.
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Pretorsion Theories on Quasi-categories

QCs: Properties of Pretorsion Theories 2

Proposition
(Generalization of [3] Propositions 2.1 et 2.2) Let C be a quasi-catégorie
and Z C C a subcategory thereof.

@ Z—kernels of the same morphism are homotopic.
@ Z—cokernels of the same morphism are homotopic.

Proposition

Let C be a quasi-catégorie and (T, F,Z) a pretorsion theory thereupon.
Then F is a reflective subcategory of C and T is a coreflective subcategory
of C.
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Examples

We consider here one family of examples, coming from a 1—categorical
construction of pretorsion theories by Cafaggi in [6].

Example: Simplicial Groups

We consider the category of simplicial groups. A simplicial group can be
viewed as a Kan complex (through a specific algorithm), or an infinity
groupoid. Reinterpreting, then, we consider a family of examples of
pretorsion theories on oo — Grpd, the (oo, 1)—category of co—groupoids.

@ T is the category of simplicial groups with associated Moore complex
that is trivial above a certain degree n.

o F is the category of simplicial groups with associated Moore complex
trivial below a certain degree m.

o If we take Z =T NF, then, (which is not actually necessary here), it
contains simplicial groups that have non-trivial Moore complex only
for a finite number of degrees (between n and m).
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Future Work and References

Future Work and Generalizations

Generalizations
© Pretorsion theories for n—categories.

@ Pointed torsion theories: Torsion theories, but such that every
morphism between T and F factorizes through one particular object).

© Ideal pretorsion theories: Pretorsion theories, but where each object
has a morphism to an object z € Z and from an object z/ € Z, and it
is not necessary that z = 2.

Future Work
@ Concoct more examples of PTTS sur QCs.

@ Construction of pointed torsion theories from pretorsion theories.

© Explore these and other possible generalizations further.
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