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Composing effects
▶ Effects can be modelled using monads, e.g.:

▶ non-determinism: X → PY = {subsets of Y }
▶ probabilities: X → DY = {finite-support prob. distr. on Y }

▶ What about combining effects?

In general, given monads(
T, ηT, µT

)
and

(
S, ηS, µS

)
, there may not be any monad

structure on ST.

▶ True with a distributive law (Beck 1969), i.e. a λ: TS⇒ ST
s.t.:
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Weak distributive laws (Böhm 2010; Garner 2020)

▶ There is no distributive law DP⇒ PD (Varacca and Winskel
2006)!

▶ Definition (weak distributive law). A WDL of
(
T, ηT, µT

)
over

(
S, ηS, µS

)
is a λ: TS⇒ ST s.t.

T TTS TST STT

TS ST TS ST

TSS STS SST

TS ST

TηS ηST

Tλ

µTS

λT
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TµS
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(µS)

▶ A WDL yields a weak composite monad S • T
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▶ There is no distributive law DP⇒ PD (Varacca and Winskel
2006)!

▶ Definition (weak distributive law). A WDL of
(
T, ηT, µT

)
over

(
S, ηS, µS

)
is a λ: TS⇒ ST s.t.

T TTS TST STT

TS ST TS ST

TSS STS SST

TS ST

TηS ηST

Tλ

µTS

λT

SµT

λ λ

λS

TµS

Sλ

µST

λ

(ηS) (µT)

(µS)

▶ A WDL yields a weak composite monad S • T

3 / 12



Weak distributive laws (Böhm 2010; Garner 2020)
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Examples of weak distributive laws

▶ (Goy and Petrişan 2020) In Set, there is a WDL DP⇒ PD
s.t. (P • D)X = {convex subsets of prob. distr. on X}

▶ (Garner 2020) In Set, a WDL PP⇒ PP:

PPX → PPX

A 7→ {E | E ⊆
⋃

A and ∀E ′ ∈ A, E ∩ E ′ ̸= ∅}

▶ (Goy, Petrişan, and Aiguier 2021) In KHausii, a WDL
VV⇒ VViii:

VVX → VVX

A 7→ {E | E ⊆
⋃

A and ∀E ′ ∈ A, E ∩ E ′ ̸= ∅}

The formula is the same... is this just a coincidence?

ii

the category of compact Hausdorff spaces and continuous functions

iii

V is the Vietoris monad of closed subsets
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Equivalent presentations of WDLs

TFAE WDLs
of T over S

weak extensions
of T to Kl(S)

weak liftings
of S to EM(T)

i.e. ρ: TS⇒ ST

(T, µT) in Kl(S)
(
S, ηS , µS

)
in EM(T)

examples

PP⇒ PP
in Kl(P) ∼= Rel,

P
(
X f←− R g−→ Y

)
=

PX Pf←− PR Pg−−→ PY

VV⇒ VV
in Kl(V) ↪→ Rel(KHaus),

V
(
X f←− R g−→ Y

)
=

VX Vf←−− VR Vg−−→ VY

βP⇒ Pβiv
(
V, ηV, µV

)
in EM(β) ∼= KHaus

iv

β is the ultrafilter monad
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▶ If V is a weak lifting of P, is the WDL VV⇒ VV some sort
of weak lifting of the WDL PP⇒ PP?

▶ Can we also weakly lift the WDL PP⇒ PP to EM(P) and
EM(D)?

▶ Two approaches:

▶ weakly lifting is 2-categorical
▶ weakly lifting the construction of (P, µP) on spans
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Background: monotone WDLs in regular categories

▶ For every reg. cat. C, one can define Rel(C):

▶ Ob(Rel(C)) = Ob(C)

▶ HomRel(C)(X , Y ) =

 spans X ← R → Y in C

| R ↪→ X × Y is a mono


▶ preorder:

(X ← R → Y ) ≤ (X ← S → Y )
⇐⇒ ∃m mono,

R

X S Y

m

▶ Examples. Set is regular, Rel(Set) = Rel. KHaus is regular,
Rel(KHaus) = compact Hausdorff spaces and closed relations.
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Background: monotone WDLs in regular categories

▶ Theorem (Carboni et al. 1991). If C and D are regular,

▶ F: C→ D has a monotone extension F: Rel(C)→ Rel(D) iff
it is a nearly cartesian functor, in which case

F(X f←− R g−→ Y ) = FX Ff←− FR Fg−−→ FY

▶ α: F ⇒ G has a (necessarily unique) extension α: F ⇒ G iff it
is a nearly cartesian natural transformation

▶ Suppose T and µT nearly cartesian, and that
T: Rel(C)→ Rel(C) restricts along Kl(S) ↪→ Rel(C)

▶ then (T, µT) is a monotone weak extension of T to Kl(S)
▶ we get a monotone WDL TS⇒ ST

▶ Examples. P and µP are nearly cartesian and Kl(P) ∼= Rel
(Garner 2020). V and µV are nearly cartesian and
Kl(V) ↪→ Rel(KHaus) (Goy, Petrişan, and Aiguier 2021).
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Weakly lifting the setting for monotone WDLs, part 1

▶ From now on T is a monad on Set s.t. T and µT are nearly
cartesian:

▶
(
T, ηT, µT)

has a monotone weak extension to Rel ∼= Kl(P);
▶ there is a monotone WDL TP⇒ PT;
▶

(
P, ηP, µP)

has a weak lifting
(

P, ηP , µP
)

to EM(T);
Moreover:
▶ EM(T) is regular;

▶ Is there a monotone WDL PP ⇒ PP?
▶ Lemma. Weakly lifting preserves near cartesianness.
▶ Example. V weak lifting of P to EM(β) ∼= KHaus:

P and µP are nearly cartesian hence V and µV are as well.
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Weakly lifting the setting for monotone WDLs, part 2
▶ Is Kl

(
P

)
always a subcategory of Rel(EM(T))? If so, when

does the relational extension of S restrict to Kl
(
P

)
?

▶ Proposition. An EM(T)-relation (A, a) ↭ (B, b)

TA TR TB

A R B

a

Tf Tg

≤ br

f g

is a Kl
(
P

)
-morphism (A, a) (B, b)

▶ iff the inequality on the left is an equality
▶ iff ∀x ∈ A, x ′ ∈ R, t ∈ TA, a(t) = x = f (x ′)

⇒ ∃t ′ ∈ TR, x ′ = r(t ′) ∧ (Tf )(t ′) = t.
I say f is decomposable.

▶ Theorem. Let S be a weak lifting of a monad S with a
monotone WDL SP⇒ PS. There is a monotone WDL
SP ⇒ PS iff S preserves decomposable morphisms.
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Weakly lifting the setting for monotone WDLs to KHaus

In KHaus ∼= EM(β),

▶ P = V
▶ decomposable morphisms of β-algebras correspond to open

maps (Clementino et al. 2014)
▶ Corollary. V preserves open maps hence there is a (unique)

monotone WDL VV⇒ VV.
▶ Consider the Radon monad

(
R, ηR, µR

)
(RX = {Radon probability measures on X})

▶ Corollary. R does not preserve open maps hence there is no
monotone WDL RV⇒ VR.

▶ Theorem. R preserves surjective open maps hence there is a
(unique) monotone WDL RV∗ ⇒ V∗Rv. See also
(Goubault-Larrecq 2024).

vV∗X = space of closed subsets of X , excluding ∅
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Conclusion: no-go theorems for monotone WDLs

PP⇒ PP and VV⇒ VV look the same... but monotone WDLs
over P are quite rare otherwise:

KHaus JSL Conv Mon CMon

V R P P M D P MS M D P

P ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

P∗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

▶ What’s next?
▶ extending this framework: Pos-regular categories, other

monads of relations
▶ no-go theorems for (all) WDLs
▶ seeing this in the setting of monoidal topology

12 / 12


