Monotone weak distributive laws over weakly lifted powerset monads in categories of algebrasⁱ

Quentin Aristote, IRIF, Université Paris-Cité, INRIA PiCube

November 15th, 2024

ⁱFull paper available on HAL: hal-04712728

Effects can be modelled using monads, e.g.:

Effects can be modelled using monads, e.g.:

• non-determinism: $X \rightarrow PY = \{ \text{subsets of } Y \}$

Effects can be modelled using monads, e.g.:

- non-determinism: $X \to PY = {$ subsets of $Y }$
- ▶ probabilities: $X \to DY = \{\text{finite-support prob. distr. on } Y\}$

Effects can be modelled using monads, e.g.:

- non-determinism: $X \rightarrow PY = {$ subsets of $Y }$
- ▶ probabilities: $X \to DY = \{\text{finite-support prob. distr. on } Y\}$

What about combining effects?

Effects can be modelled using monads, e.g.:

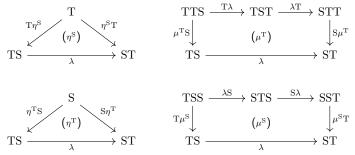
• non-determinism: $X \rightarrow PY = {$ subsets of $Y }$

▶ probabilities: $X \to DY = \{\text{finite-support prob. distr. on } Y\}$

▶ What about combining effects? In general, given monads (T, η^T, μ^T) and (S, η^S, μ^S) , there may not be any monad structure on ST.

Effects can be modelled using monads, e.g.:

- non-determinism: $X \rightarrow PY = {$ subsets of $Y }$
- ▶ probabilities: $X \to DY = \{\text{finite-support prob. distr. on } Y\}$
- ▶ What about combining effects? In general, given monads (T, η^T, μ^T) and (S, η^S, μ^S) , there may not be any monad structure on ST.
- True with a distributive law (Beck 1969), i.e. a λ: TS ⇒ ST s.t.:

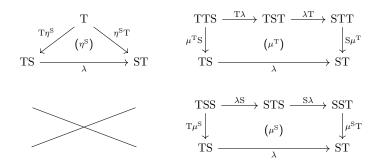


▶ There is no distributive law $DP \Rightarrow PD$ (Varacca and Winskel 2006)!

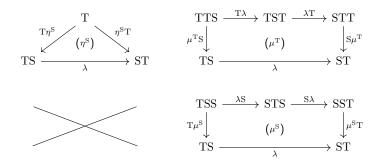
- ► There is no distributive law DP ⇒ PD (Varacca and Winskel 2006)!
- ▶ Definition (weak distributive law). A WDL of (T, η^T, μ^T)

over (S, η^S, μ^S) is a $\lambda: TS \Rightarrow ST$ s.t.

- ► There is no distributive law DP ⇒ PD (Varacca and Winskel 2006)!
- Definition (weak distributive law). A WDL of (T, η^T, μ^T) over (S, η^S, μ^S) is a λ : TS \Rightarrow ST s.t.



- ► There is no distributive law DP ⇒ PD (Varacca and Winskel 2006)!
- Definition (weak distributive law). A WDL of (T, η^T, μ^T) over (S, η^S, μ^S) is a λ : TS \Rightarrow ST s.t.



► A WDL yields a weak composite monad S • T

(Goy and Petrişan 2020) In Set, there is a WDL DP ⇒ PD
 s.t. (P • D)X = {convex subsets of prob. distr. on X}

iii

ii

- (Goy and Petrişan 2020) In Set, there is a WDL DP ⇒ PD
 s.t. (P D)X = {convex subsets of prob. distr. on X}
- ▶ (Garner 2020) In Set, a WDL $PP \Rightarrow PP$:

$$\begin{array}{rcl} \operatorname{PP} X & \to & \operatorname{PP} X \\ A & \mapsto & \{E \mid E \subseteq \bigcup A \text{ and } \forall E' \in A, E \cap E' \neq \varnothing\} \end{array}$$

ii

iii

- (Goy and Petrişan 2020) In Set, there is a WDL DP ⇒ PD
 s.t. (P D)X = {convex subsets of prob. distr. on X}
- ▶ (Garner 2020) In Set, a WDL $PP \Rightarrow PP$:

 $\begin{array}{lll} \operatorname{PP} X & \to & \operatorname{PP} X \\ A & \mapsto & \{E \mid E \subseteq \bigcup A \text{ and } \forall E' \in A, E \cap E' \neq \varnothing\} \end{array}$

► (Goy, Petrişan, and Aiguier 2021) In KHausⁱⁱ, a WDL $VV \Rightarrow VV^{iii}$: $VVX \rightarrow VVX$

 $A \quad \mapsto \ \{E \mid E \subseteq \bigcup A \text{ and } \forall E' \in A, E \cap E' \neq \varnothing\}$

 $^{^{}ii}{\rm the}$ category of compact Hausdorff spaces and continuous functions $^{iii}{\rm V}$ is the Vietoris monad of closed subsets

- (Goy and Petrişan 2020) In Set, there is a WDL DP ⇒ PD
 s.t. (P D)X = {convex subsets of prob. distr. on X}
- ▶ (Garner 2020) In Set, a WDL $PP \Rightarrow PP$:

 $\begin{array}{rcl} \operatorname{PP} X & \to & \operatorname{PP} X \\ A & \mapsto & \{ E \mid E \subseteq \bigcup A \text{ and } \forall E' \in A, E \cap E' \neq \varnothing \} \end{array}$

► (Goy, Petrişan, and Aiguier 2021) In KHausⁱⁱ, a WDL $VV \Rightarrow VV^{iii}$: $VVX \rightarrow VVX$

 $A \quad \mapsto \ \{E \mid E \subseteq \bigcup A \text{ and } \forall E' \in A, E \cap E' \neq \varnothing\}$

The formula is the same... is this just a coincidence?

 $^{^{\}rm ii}{\rm the}$ category of compact Hausdorff spaces and continuous functions $^{\rm iii}{\rm V}$ is the Vietoris monad of closed subsets

TFAE WDLs i.e. $\rho: TS \Rightarrow ST$ examples

TFAEWDLsweak extensionsof T over Sof T to Kl(S)i.e. $\rho: TS \Rightarrow ST$ $(\underline{T}, \mu^{\underline{T}})$ in Kl(S) TFAE examples

TFAEWDLs
of T over Sweak extensions
of T to Kl(S)i.e. $\rho: TS \Rightarrow ST$ $(\underline{T}, \mu^{\underline{T}})$ in Kl(S)amples $PP \Rightarrow PP$ $\underline{P} \left(X \xleftarrow{f} R \xrightarrow{g} Y \right) =$
 $PX \xleftarrow{Pf} PR \xrightarrow{Pg} PY$ TFAE examples

TFAE WDLs weak extensions of T over S of T to Kl(S) $\rho: TS \Rightarrow ST$ (<u>T</u>, $\mu^{\underline{T}}$) in Kl(S) i.e. in $Kl(P) \cong Rel$, $PP \Rightarrow PP \quad \underline{P}\left(X \stackrel{f}{\leftarrow} R \stackrel{g}{\rightarrow} Y\right) =$ examples $PX \stackrel{Pf}{\leftarrow} PR \stackrel{Pg}{\leftarrow} PV$ $VV \Rightarrow VV \qquad \frac{V}{V} \begin{pmatrix} X \stackrel{f}{\leftarrow} R \stackrel{g}{\rightarrow} Y \end{pmatrix} = VX \stackrel{Vf}{\leftarrow} VR \stackrel{Vg}{\longrightarrow} VY$ in $Kl(V) \hookrightarrow Rel(KHaus)$,

TFAE	WDLs of ${\rm T}$ over ${\rm S}$	weak extensions of T to Kl(S)	weak liftings of ${ m S}$ to ${ m EM}({ m T})$
i.e.	$\rho : \mathrm{TS} \Rightarrow \mathrm{ST}$	$(\underline{\mathrm{T}},\mu^{\underline{\mathrm{T}}})$ in Kl(S)	$\left(\overline{\mathrm{S}},\eta^{\overline{\mathrm{S}}},\mu^{\overline{\mathrm{S}}} ight)$ in EM(T)
examples	$PP \Rightarrow PP$	in Kl(P) \cong Rel, $\underline{P}\left(X \stackrel{f}{\leftarrow} R \xrightarrow{g} Y\right) =$ $PX \stackrel{Pf}{\leftarrow} PR \xrightarrow{Pg} PY$	
	$\mathrm{VV} \Rightarrow \mathrm{VV}$	in Kl(V) \hookrightarrow Rel(KH $\underline{V}\left(X \xleftarrow{f} R \xrightarrow{g} Y\right)$ $VX \xleftarrow{Vf} VR \xrightarrow{Vg} V$	=

TFAE	WDLs of ${\rm T}$ over ${\rm S}$	weak extensions of T to Kl(S)	weak liftings of S to EM(T)
i.e.	$\rho:\mathrm{TS}\Rightarrow\mathrm{ST}$	$(\underline{\mathrm{T}},\mu^{\underline{\mathrm{T}}})$ in $\mathrm{Kl}(\mathrm{S})$	$\left(\overline{\mathrm{S}},\eta^{\overline{\mathrm{S}}},\mu^{\overline{\mathrm{S}}} ight)$ in EM(T)
examples	$PP \Rightarrow PP$	in Kl(P) \cong Rel, $\underline{P}\left(X \xleftarrow{f} R \xrightarrow{g} Y\right) =$ $PX \xleftarrow{Pf} PR \xrightarrow{Pg} PY$	
	$VV \Rightarrow VV$	in Kl(V) \hookrightarrow Rel(KH $\underline{V}\left(X \xleftarrow{f} R \xrightarrow{g} Y\right)$ $VX \xleftarrow{Vf} VR \xrightarrow{Vg} Y$	=
	$\beta P \Rightarrow P \beta^{iv}$		$\left(\mathrm{V},\eta^{\mathrm{V}},\mu^{\mathrm{V}} ight)$ in EM(eta) \cong KHaus

 ${}^{\rm iv}\beta$ is the ultrafilter monad

If V is a weak lifting of P, is the WDL VV ⇒ VV some sort of weak lifting of the WDL PP ⇒ PP?

- If V is a weak lifting of P, is the WDL VV ⇒ VV some sort of weak lifting of the WDL PP ⇒ PP?
- ▶ Can we also weakly lift the WDL $PP \Rightarrow PP$ to EM(P) and EM(D)?

- If V is a weak lifting of P, is the WDL VV ⇒ VV some sort of weak lifting of the WDL PP ⇒ PP?
- ▶ Can we also weakly lift the WDL $PP \Rightarrow PP$ to EM(P) and EM(D)?
- Two approaches:

- If V is a weak lifting of P, is the WDL VV ⇒ VV some sort of weak lifting of the WDL PP ⇒ PP?
- ▶ Can we also weakly lift the WDL $PP \Rightarrow PP$ to EM(P) and EM(D)?
- Two approaches:
 - weakly lifting is 2-categorical

- If V is a weak lifting of P, is the WDL VV ⇒ VV some sort of weak lifting of the WDL PP ⇒ PP?
- ▶ Can we also weakly lift the WDL $PP \Rightarrow PP$ to EM(P) and EM(D)?
- Two approaches:
 - weakly lifting is 2-categorical
 - weakly lifting the construction of $(\underline{P}, \mu^{\underline{P}})$ on spans

Background: monotone WDLs in regular categories

regular categories

► For every reg. cat. C, one can define Rel(C):

regular categories

► For every reg. cat. C, one can define Rel(C):

 $\blacktriangleright \operatorname{Ob}(\operatorname{Rel}(C)) = \operatorname{Ob}(C)$

regular categories

► For every reg. cat. C, one can define Rel(C):

regular categories

For every reg. cat. C, one can define Rel(C):

regular categories

For every reg. cat. C, one can define Rel(C):

regular categories

regular categories

Examples. Set is regular, Rel(Set) = Rel. KHaus is regular, Rel(KHaus) = compact Hausdorff spaces and closed relations.

Background: monotone WDLs in regular categories

Theorem (Carboni et al. 1991). If C and D are regular,

- **Theorem (Carboni** et al. 1991). If C and D are regular,
 - F: C → D has a monotone extension <u>F</u>: Rel(C) → Rel(D) iff it is a *nearly cartesian* functor, in which case

$$\underline{\mathrm{F}}(X \xleftarrow{f} R \xrightarrow{g} Y) = \mathrm{F}X \xleftarrow{\mathrm{F}f} \mathrm{F}R \xrightarrow{\mathrm{F}g} \mathrm{F}Y$$

- Theorem (Carboni et al. 1991). If C and D are regular,
 - F: C → D has a monotone extension <u>F</u>: Rel(C) → Rel(D) iff it is a *nearly cartesian* functor, in which case

$$\underline{\mathrm{F}}(X \xleftarrow{f} R \xrightarrow{g} Y) = \mathrm{F}X \xleftarrow{\mathrm{F}f} \mathrm{F}R \xrightarrow{\mathrm{F}g} \mathrm{F}Y$$

α: F ⇒ G has a (necessarily unique) extension <u>α</u>: <u>F</u> ⇒ <u>G</u> iff it is a *nearly cartesian* natural transformation

- ▶ Theorem (Carboni et al. 1991). If C and D are regular,
 - F: C → D has a monotone extension <u>F</u>: Rel(C) → Rel(D) iff it is a *nearly cartesian* functor, in which case

$$\underline{\mathrm{F}}(X \xleftarrow{f} R \xrightarrow{g} Y) = \mathrm{F}X \xleftarrow{\mathrm{F}f} \mathrm{F}R \xrightarrow{\mathrm{F}g} \mathrm{F}Y$$

• $\alpha: F \Rightarrow G$ has a (necessarily unique) extension $\underline{\alpha}: \underline{F} \Rightarrow \underline{G}$ iff it is a *nearly cartesian* natural transformation

Suppose T and μ^{T} nearly cartesian, and that $\underline{T}: Rel(C) \rightarrow Rel(C)$ restricts along $Kl(S) \hookrightarrow Rel(C)$

- ▶ Theorem (Carboni et al. 1991). If C and D are regular,
 - F: C → D has a monotone extension <u>F</u>: Rel(C) → Rel(D) iff it is a *nearly cartesian* functor, in which case

$$\underline{\mathrm{F}}(X \xleftarrow{f} R \xrightarrow{g} Y) = \mathrm{F}X \xleftarrow{\mathrm{F}f} \mathrm{F}R \xrightarrow{\mathrm{F}g} \mathrm{F}Y$$

- $\alpha: F \Rightarrow G$ has a (necessarily unique) extension $\underline{\alpha}: \underline{F} \Rightarrow \underline{G}$ iff it is a *nearly cartesian* natural transformation
- Suppose T and μ^T nearly cartesian, and that <u>T</u>: Rel(C) → Rel(C) restricts along Kl(S) → Rel(C)
 then (T, μ^T) is a monotone weak extension of T to Kl(S)

- ▶ Theorem (Carboni et al. 1991). If C and D are regular,
 - F: C → D has a monotone extension <u>F</u>: Rel(C) → Rel(D) iff it is a *nearly cartesian* functor, in which case

$$\underline{\mathrm{F}}(X \xleftarrow{f} R \xrightarrow{g} Y) = \mathrm{F}X \xleftarrow{\mathrm{F}f} \mathrm{F}R \xrightarrow{\mathrm{F}g} \mathrm{F}Y$$

- $\alpha: F \Rightarrow G$ has a (necessarily unique) extension $\underline{\alpha}: \underline{F} \Rightarrow \underline{G}$ iff it is a *nearly cartesian* natural transformation
- Suppose T and μ^{T} nearly cartesian, and that $\underline{T}: \operatorname{Rel}(C) \to \operatorname{Rel}(C)$ restricts along $\operatorname{Kl}(S) \hookrightarrow \operatorname{Rel}(C)$
 - then $(\underline{T}, \mu^{\underline{T}})$ is a monotone weak extension of T to Kl(S)
 - we get a monotone WDL $TS \Rightarrow ST$

- ▶ Theorem (Carboni et al. 1991). If C and D are regular,
 - F: C → D has a monotone extension <u>F</u>: Rel(C) → Rel(D) iff it is a *nearly cartesian* functor, in which case

$$\underline{\mathrm{F}}(X \xleftarrow{f} R \xrightarrow{g} Y) = \mathrm{F}X \xleftarrow{\mathrm{F}f} \mathrm{F}R \xrightarrow{\mathrm{F}g} \mathrm{F}Y$$

- α: F ⇒ G has a (necessarily unique) extension <u>α</u>: <u>F</u> ⇒ <u>G</u> iff it is a *nearly cartesian* natural transformation
- Suppose T and μ^{T} nearly cartesian, and that $\underline{T}: \operatorname{Rel}(C) \to \operatorname{Rel}(C)$ restricts along $\operatorname{Kl}(S) \hookrightarrow \operatorname{Rel}(C)$
 - then $(\underline{T}, \mu^{\underline{T}})$ is a monotone weak extension of T to Kl(S)
 - we get a *monotone* WDL $TS \Rightarrow ST$
- ► Examples. P and μ^P are nearly cartesian and Kl(P) ≅ Rel (Garner 2020). V and μ^V are nearly cartesian and Kl(V) → Rel(KHaus) (Goy, Petrişan, and Aiguier 2021).

From now on T is a monad on Set s.t. T and μ^{T} are nearly cartesian:

- From now on T is a monad on Set s.t. T and μ^{T} are nearly cartesian:
 - (T, η^T, μ^T) has a monotone weak extension to $Rel \cong Kl(P)$;

- From now on T is a monad on Set s.t. T and μ^{T} are nearly cartesian:
 - (T, η^T, μ^T) has a monotone weak extension to $Rel \cong Kl(P)$;
 - there is a monotone WDL $TP \Rightarrow PT$;

- From now on T is a monad on Set s.t. T and μ^{T} are nearly cartesian:
 - (T, η^T, μ^T) has a monotone weak extension to $Rel \cong Kl(P)$; • there is a monotone WDL $TP \Rightarrow PT$;
 - (P, η^P, μ^P) has a weak lifting $(\overline{P}, \eta^{\overline{P}}, \mu^{\overline{P}})$ to EM(T);

- From now on T is a monad on Set s.t. T and μ^{T} are nearly cartesian:
 - (T, η^T, μ^T) has a monotone weak extension to $Rel \cong Kl(P)$; • there is a monotone WDL $TP \Rightarrow PT$;
 - (P, η^P, μ^P) has a weak lifting $(\overline{P}, \eta^{\overline{P}}, \mu^{\overline{P}})$ to EM(T);

Moreover:

EM(T) is regular;

- From now on T is a monad on Set s.t. T and μ^{T} are nearly cartesian:
 - (T, η^T, μ^T) has a monotone weak extension to $Rel \cong Kl(P)$; • there is a monotone WDL $TP \Rightarrow PT$;
 - (P, η^P, μ^P) has a weak lifting $(\overline{P}, \eta^{\overline{P}}, \mu^{\overline{P}})$ to EM(T);

Moreover:

EM(T) is regular;

▶ Is there a monotone WDL $\overline{P}\overline{P} \Rightarrow \overline{P}\overline{P}$?

- From now on T is a monad on Set s.t. T and μ^{T} are nearly cartesian:
 - (T, η^T, μ^T) has a monotone weak extension to Rel \cong Kl(P); • there is a monotone WDL TP \Rightarrow PT;
 - (P, η^P, μ^P) has a weak lifting $(\overline{P}, \eta^{\overline{P}}, \mu^{\overline{P}})$ to EM(T);

Moreover:

EM(T) is regular;

- Is there a monotone WDL $\overline{P}\overline{P} \Rightarrow \overline{P}\overline{P}?$
- **Lemma.** Weakly lifting preserves *near cartesianness*.

- From now on T is a monad on Set s.t. T and μ^{T} are nearly cartesian:
 - (T, η^T, μ^T) has a monotone weak extension to $Rel \cong Kl(P)$; • there is a monotone WDL $TP \Rightarrow PT$;
 - (P, η^P, μ^P) has a weak lifting $(\overline{P}, \eta^{\overline{P}}, \mu^{\overline{P}})$ to EM(T);

Moreover:

EM(T) is regular;

- ▶ Is there a monotone WDL $\overline{P}\overline{P} \Rightarrow \overline{P}\overline{P}$?
- Lemma. Weakly lifting preserves near cartesianness.
- **Example.** V weak lifting of P to $EM(\beta) \cong KHaus:$ P and μ^P are nearly cartesian hence V and μ^V are as well.

▶ Is $Kl(\overline{P})$ always a subcategory of Rel(EM(T))? If so, when does the relational extension of \overline{S} restrict to $Kl(\overline{P})$?

- ▶ Is $Kl(\overline{P})$ always a subcategory of Rel(EM(T))? If so, when does the relational extension of \overline{S} restrict to $Kl(\overline{P})$?
- **Proposition.** An EM(T)-relation $(A, a) \iff (B, b)$

- ▶ Is $Kl(\overline{P})$ always a subcategory of Rel(EM(T))? If so, when does the relational extension of \overline{S} restrict to $Kl(\overline{P})$?
- **Proposition.** An EM(T)-relation $(A, a) \iff (B, b)$

$$\begin{array}{cccc} \mathrm{T}A & \stackrel{\mathrm{T}f}{\longleftarrow} & \mathrm{T}R & \stackrel{\mathrm{T}g}{\longrightarrow} & \mathrm{T}B \\ \stackrel{a}{\downarrow} & \swarrow & \stackrel{i}{\downarrow} & & \downarrow \\ A & \stackrel{f}{\longleftarrow} & R & \stackrel{g}{\longrightarrow} & B \end{array}$$

is a $\operatorname{Kl}(\overline{\operatorname{P}})$ -morphism $(A, a) \longrightarrow (B, b)$

- ▶ Is $Kl(\overline{P})$ always a subcategory of Rel(EM(T))? If so, when does the relational extension of \overline{S} restrict to $Kl(\overline{P})$?
- **Proposition.** An EM(T)-relation $(A, a) \iff (B, b)$

is a Kl(P̄)-morphism (A, a) → (B, b)
iff the inequality on the left is an equality

- ▶ Is $Kl(\overline{P})$ always a subcategory of Rel(EM(T))? If so, when does the relational extension of \overline{S} restrict to $Kl(\overline{P})$?
- **Proposition.** An EM(T)-relation $(A, a) \iff (B, b)$

is a $\operatorname{Kl}(\overline{P})$ -morphism $(A, a) \longrightarrow (B, b)$ iff the inequality on the left is an equality iff $\forall x \in A, x' \in R, t \in \operatorname{T}A, a(t) = x = f(x')$ $\Rightarrow \exists t' \in \operatorname{T}R, x' = r(t') \land (\operatorname{T}f)(t') = t.$

- ▶ Is $Kl(\overline{P})$ always a subcategory of Rel(EM(T))? If so, when does the relational extension of \overline{S} restrict to $Kl(\overline{P})$?
- **Proposition.** An EM(T)-relation $(A, a) \iff (B, b)$

is a Kl(P)-morphism (A, a) → (B, b)
iff the inequality on the left is an equality
iff ∀x ∈ A, x' ∈ R, t ∈ TA, a(t) = x = f(x') ⇒ ∃t' ∈ TR, x' = r(t') ∧ (Tf)(t') = t.
I say f is decomposable.

- ▶ Is $Kl(\overline{P})$ always a subcategory of Rel(EM(T))? If so, when does the relational extension of \overline{S} restrict to $Kl(\overline{P})$?
- **Proposition.** An EM(T)-relation $(A, a) \iff (B, b)$

is a $\operatorname{Kl}(\overline{\operatorname{P}})$ -morphism $(A, a) \longrightarrow (B, b)$ iff the inequality on the left is an equality iff $\forall x \in A, x' \in R, t \in \operatorname{T}A, a(t) = x = f(x')$ $\Rightarrow \exists t' \in \operatorname{T}R, x' = r(t') \land (\operatorname{T}f)(t') = t.$

I say f is decomposable.

► Theorem. Let S be a weak lifting of a monad S with a monotone WDL SP ⇒ PS. There is a monotone WDL SP ⇒ PS iff S preserves decomposable morphisms.

 $^{{}^{\}mathrm{v}}\mathrm{V}_{*}X=$ space of closed subsets of X, excluding arnothing

 $^{{}^{\}mathrm{v}}\mathrm{V}_{*}X=$ space of closed subsets of X, excluding arnothing

- $\blacktriangleright \overline{\mathbf{P}} = \mathbf{V}$
- decomposable morphisms of β-algebras correspond to open maps (Clementino *et al.* 2014)

 $^{^{\}mathrm{v}}\mathrm{V}_{*}X =$ space of closed subsets of X, excluding arnothing

Weakly lifting the setting for monotone WDLs to KHaus

- $\blacktriangleright \ \overline{\mathbf{P}} = \mathbf{V}$
- decomposable morphisms of β-algebras correspond to open maps (Clementino *et al.* 2014)
- Corollary. V preserves open maps hence there is a (unique) monotone WDL VV ⇒ VV.

 $^{^{\}mathrm{v}}\mathrm{V}_{*}X =$ space of closed subsets of X, excluding arnothing

In KHaus \cong EM(β),

 $\blacktriangleright \ \overline{\mathbf{P}} = \mathbf{V}$

- decomposable morphisms of β-algebras correspond to open maps (Clementino *et al.* 2014)
- Corollary. V preserves open maps hence there is a (unique) monotone WDL VV ⇒ VV.
- Consider the Radon monad (R, η^R, μ^R) (RX = {Radon probability measures on X})

 $^{^{\}mathrm{v}}\mathrm{V}_{*}X =$ space of closed subsets of X, excluding arnothing

In KHaus \cong EM(β),

 $\blacktriangleright \ \overline{\mathbf{P}} = \mathbf{V}$

- decomposable morphisms of β-algebras correspond to open maps (Clementino *et al.* 2014)
- Corollary. V preserves open maps hence there is a (unique) monotone WDL VV ⇒ VV.
- Consider the Radon monad (R, η^R, μ^R)
 - $(\mathbf{R}X = \{ \text{Radon probability measures on } X \})$
 - \blacktriangleright Corollary. R does not preserve open maps hence there is no monotone WDL $RV \Rightarrow VR.$

 $^{^{\}mathrm{v}}\mathrm{V}_{*}X =$ space of closed subsets of X, excluding arnothing

- $\blacktriangleright \ \overline{\mathbf{P}} = \mathbf{V}$
- decomposable morphisms of β-algebras correspond to open maps (Clementino *et al.* 2014)
- Corollary. V preserves open maps hence there is a (unique) monotone WDL VV ⇒ VV.
- Consider the Radon monad (R, η^R, μ^R)
 - $(\mathbf{R}X = \{ \text{Radon probability measures on } X \})$
 - \blacktriangleright Corollary. R does not preserve open maps hence there is no monotone WDL $RV \Rightarrow VR.$
 - ► Theorem. R preserves surjective open maps hence there is a (unique) monotone WDL RV_{*} ⇒ V_{*}R^v. See also (Goubault-Larrecq 2024).

 $^{{}^{\}mathrm{v}}\mathrm{V}_{*}X=$ space of closed subsets of X, excluding arnothing

Conclusion: no-go theorems for monotone WDLs

 $PP \Rightarrow PP$ and $VV \Rightarrow VV$ look the same... but monotone WDLs over \overline{P} are quite rare otherwise:

	KHaus		JSL	Conv	Mon				CMon		
	V	R	$\overline{\mathbf{P}}$	$\overline{\mathbf{P}}$	$\overline{\mathbf{M}}$	$\overline{\mathrm{D}}$	$\overline{\mathbf{P}}$	$\overline{\mathrm{M}_{\boldsymbol{S}}}$	$\overline{\mathbf{M}}$	$\overline{\mathrm{D}}$	$\overline{\mathbf{P}}$
$\overline{\mathbf{P}}$	1	X	X	×	X	X	X	X	X	X	X
$\overline{\mathbf{P}_*}$	1	✓	X	×	x	X	X	X	x	X	X

What's next?

- extending this framework: Pos-regular categories, other monads of relations
- no-go theorems for (all) WDLs
- seeing this in the setting of monoidal topology