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Composing effects

» Effects can be modelled using monads, e.g.:
» non-determinism: X — PY = {subsets of Y}
» probabilities: X — DY = {finite-support prob. distr. on Y}

» What about combining effects? In general, given monads
(T,nT,MT) and (S,ns,us), there may not be any monad
structure on ST.

» True with a distributive law (Beck 1969), i.e. a \: TS = ST

s.t.:
T TTS —2 3 TST —2T % STT
TnS ST T T
(,,]s) ns (NT) Sp
TS ————— ST TS - ST
S TSS —28 5§75 — X & 99T
nTS SyT
(TIT) TS (#s) uST
TS ———— ST TS < ST
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Weak distributive laws (Bohm 2010; Garner 2020)

» There is no distributive law DP = PD (Varacca and Winskel

2006)!

> Definition (weak distributive law). A WDL of (T,nT, T

over (S,ns7us) isa A\ TS = ST s.t.

TTS — 2 4 TST

AT, STT

/ (ng)\ El (")

J/S”T

ST

TS s w— ST TS 3

TSS —25 5 STS

>< | )
TS

SA . SST

J{IJ’S B

ST

> A WDL yields a weak composite monad S e T
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s.t. (P e D)X = {convex subsets of prob. distr. on X}

» (Garner 2020) In Set, a WDL PP = PP:
PPX — PPX

A — {E|ECUAandVE' € A ENE # &}

» (Goy, Petrisan, and Aiguier 2021) In KHaus", a WDL
VV = VVii.
VVX — VVX

A — {E|ECUAandVE € A ENE # o)}

The formula is the same... is this just a coincidence?

ithe category of compact Hausdorff spaces and continuous functions
"V is the Vietoris monad of closed subsets
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TFAE WDLs weak extensions weak liftings
of T over S of T to KI(S) of S to EM(T)

e | prs=sT (Tt inkis) (S5 45) in EM(T)
in KI(P) = Rel,
examples| pp—~pp P (X L RE Y) =
px £ pr & py
in KI(V) — Rel(KHaus),
Wovy o V(XEREY) =
vx &L vr e vy

8P = PBV (V.n¥, )
in EM(5) = KHaus

V3 is the ultrafilter monad
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> If V is a weak lifting of P, is the WDL VV = VV some sort
of weak lifting of the WDL PP = PP?

» Can we also weakly lift the WDL PP = PP to EM(P) and
EM(D)?

» Two approaches:

> i e ol

> weakly lifting the construction of (P, u£) on spans
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» For every reg. cat. C, one can define Rel(C):
> Ob(Rel(C)) = Ob(C)
> HomRel(C)(X7 Y) =

| R— X x Y is a mono
» preorder: (X<« R—=Y)<(X+S—=Y)

<= dm mono,
R

X+—S§5 —Y

SpansX<—R—>YinC}

» Examples. Set is regular, Rel(Set) = Rel. KHaus is regular,
Rel(KHaus) = compact Hausdorff spaces and closed relations.
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it is a nearly cartesian functor, in which case

FXLRE v)=Fx £ FR I Py

» «a:F = G has a (necessarily unique) extension a: F = G iff it
is a nearly cartesian natural transformation

» Suppose T and T nearly cartesian, and that
T:Rel(C) — Rel(C) restricts along K1(S) — Rel(C)
> then (T, L) is a monotone weak extension of T to KI(S)
» we get a monotone WDL TS = ST
> Examples. P and u are nearly cartesian and KI(P) = Rel
(Garner 2020). V and p" are nearly cartesian and
KI(V) — Rel(KHaus) (Goy, Petrisan, and Aiguier 2021).
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v

From now on T is a monad on Set s.t. T and u* are nearly
cartesian:

» (T,nT, 1) has a monotone weak extension to Rel = KI(P);
» there is a monotone WDL TP = PT;

> (P,n%, uF) has a weak lifting (F,nﬁ,;ﬁ) to EM(T);
Moreover:

» EM(T) is regular;
Is there a monotone WDL PP = PP?
Lemma. Weakly lifting preserves near cartesianness.

Example. V weak lifting of P to EM(3) = KHaus:
P and pF are nearly cartesian hence V and 1" are as well.
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» Proposition. An EM(T)-relation (A, a) «~ (B, b)

TA <X TR 18, TB
|
R S
Ac—r— R —7— B

is a Kl(?)—morphism (A, a) - (B, b)
> iff the inequality on the left is an equality
> iff Vx € A,x’ € Ryt € TA, a(t) = x = f(x/)
=3t e TR, x' = r(t') AN (TF)(t') = t.
| say f is decomposable.
» Theorem. Let S be a weak lifting of a monad S with a
monotone WDL SP =- PS. There is a monotone WDL

SP = PS iff S preserves decomposable morphisms.
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Weakly lifting the setting for monotone WDLs to KHaus

In KHaus = EM(f),

»P=V

» decomposable morphisms of $-algebras correspond to open
maps (Clementino et al. 2014)

» Corollary. V preserves open maps hence there is a (unique)
monotone WDL VV = VV.

» Consider the Radon monad (R,nR,uR)
(RX = {Radon probability measures on X})

» Corollary. R does not preserve open maps hence there is no
monotone WDL RV = VR.

» Theorem. R preserves surjective open maps hence there is a
(unique) monotone WDL RV, = V.RY. See also
(Goubault-Larrecq 2024).

YV, X = space of closed subsets of X, excluding &
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Conclusion: no-go theorems for monotone WDLs

PP = PP and VV = VV look the same... but monotone WDLs

over P are quite rare otherwise:

KHaus | JSL | Conv Mon CMon
V R|P| P [MDP Ms|MDP
Plv x| X X | X X X X | X X X
Pov V| X | X | X XX X|Xx x X

» What's next?

» extending this framework: Pos-regular categories, other

monads of relations
» no-go theorems for (all) WDLs

» seeing this in the setting of monoidal topology
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