## Monads on Categories of Relational Structures

### Chase Ford

#### joint work with Stefan Milius and Lutz Schröder

Leiden Institute of Advanced Computer Science (Leiden University)

m.c.ford@liacs.leidenuniv.nl

Dutch Categories and Types Seminar, March 2024

## BACKGROUND

- E. Moggi (1991): Computational effects as monads/Kleisli triples e.g. categorical semantics of (probabilistic) non-determinism
- G. Plotkin & J. Power (2001): algebraic effects
  - $\triangleright$  computational effects arise from operations and equations
  - $\triangleright$  based on connection between monads and algebraic theories



### EQUATIONAL THEORIES

- Signature  $\Sigma$ : operation symbols  $\sigma$  with assigned arities  $ar(\sigma) \in \mathbb{N}$
- Σ-algebra: set A equipped with functions

 $\sigma_A \colon A^n \to A$  equivalently:  $\mathsf{Set}(n, A) \to A$ 

- Σ-algebras and homomorphisms form a category Alg(Σ)
- The free algebra of  $\Sigma$ -terms on X:



Varieties: full subcategories Alg(T) → Alg(Σ) specified by a set T of equations
 A ⊨ s = t if f<sup>#</sup>(s) = f<sup>#</sup>(t) for all f: Vars → A

#### Theorem

Every finitary monad on Set is the free algebra monad of an equational theory. Moreover,  $\operatorname{Alg}(\mathbf{T}) \cong \operatorname{Alg}(M_{\mathbf{T}})$  (as concrete categories).

- $TX = T_{\Sigma}(X)$  modulo derivable equality in the equational logic of **T**
- $\eta: X \to TX$  is "inclusion of variables as terms"
- $\mu: TTX \to TX$  is given by the "flattening" of complex terms

### Monad-theory correspondences

- G. Kelly and J. Power (1993): presentations of enriched finitary monads
  Kev idea I: arities of operations = finitely presentable objects
  - $\triangleright$  Key idea II: structured signatures  $\rightsquigarrow$  equational presentations
- Recent syntactic accounts of monads beyond Set, e.g.
  - ▷ J. Adámek, C. Ford, S. Milius, L. Schröder (2020):

finitary (enriched) monads on Pos = inequational theories

▷ R. Mardare, P. Panangaden, G. Plotkin (2016):

quantitative algebraic theories  $\hookrightarrow$  monads on Met

### - CATEGORIES OF RELATIONAL STRUCTURES -

Slogan: Horn theories balance expressive power with 'nice' categorical structure.

### Power

- Set: sets/functions
- Pos: posets/monotone maps
- Met: metric spaces/nonexpansive maps
- Par: partial algebras/homomorphisms

#### <u>Structure</u>

- locally presentable categories
- closed monoidal structure

- Relational signature  $\Pi$ : relation symbols  $\alpha$  with finite arities  $ar(\alpha) \in \mathbb{N}$
- II-structure: set X equipped with a set  $\mathsf{E}(X)$  of edges  $(\alpha, f: \mathsf{ar}(\alpha) \xrightarrow{f} X)$
- $Str(\Pi)$ : category of  $\Pi$ -structures with relation-preserving maps

$$h: X \to Y, \qquad X \models \alpha(f) \text{ implies } Y \models \alpha(h \cdot f)$$

• 
$$\mathbf{Gra} = \mathsf{Str}(\Pi) \text{ for } \Pi = \{\leq\}:$$

$$(\leq,f\colon \{0,1\}\to X)\in \mathsf{E}(X) \leftrightsquigarrow X\models f(0)\leq f(1)$$

### HORN THEORIES

• Horn sentence over  $\Pi$ : expressions  $\Phi \implies \psi$  where

 $\triangleright \Phi$  is a set of  $\Pi$ -atoms (i.e. expressions  $R(x_1, \ldots, x_n)$ )

 $\triangleright \ \psi$  is a  $\Pi \sqcup \{=\}$ -atom

- $\Phi \implies \psi$  is  $\lambda$ -ary if  $\lambda$  is a regular cardinal with card  $\Phi < \lambda$
- These are universal sentences of the infinitary logic  $\mathbf{L}_{\lambda,\lambda}$ :

$$x \leq y, y \leq x \implies x = y \text{ encodes } \quad \forall x, y. (x \leq y \land y \leq x \rightarrow x = y)$$

• Write  $\mathscr{H} = (\Pi, \mathcal{A})$  where  $\mathcal{A}$  is a set of  $\lambda$ -ary Horn sentences

We work with the full subcategory  $\mathsf{Str}(\mathscr{H}) \hookrightarrow \mathsf{Str}(\Pi)$  of  $\mathscr{H}$ -models

•  $\mathsf{Pos} = \mathsf{Str}(\mathscr{H})$  for the  $\omega$ -ary theory  $\mathscr{H}$  with  $\Pi = \{\leq\}$  and axioms

 $\top \implies x \leq x \qquad \quad \{x \leq y, y \leq z\} \implies x \leq z \qquad \quad \{x \leq y, y \leq x\} \implies x = y$ 

• Met  $\cong$  Str( $\mathscr{H}$ ) (as concrete categories) for an  $\omega_1$ -ary Horn theory

- $\triangleright$  II has binary relations  $\sim_{\epsilon}$  for all  $\epsilon \in \mathbb{Q} \cap [0, 1]$
- $\triangleright \ \, \text{interpret} \ \, X \models x \sim_{\epsilon} y \text{ as } d(x,y) \leq \epsilon \text{:}$

$$d(x,y) := \bigwedge \{ \epsilon \in \mathbb{Q} \cap [0,1] \mid X \models x \sim_{\epsilon} y \}$$

 $\triangleright$  emphasis: this requires an  $\omega_1$ -ary axiom

$$\{x\sim_{\delta}y\mid \mathbb{Q}\cap [0,1]\ni \delta>\epsilon\}\implies x\sim_{\epsilon}y$$

#### PROPOSITION

 $\mathsf{Str}(\mathscr{H})$  is a full (epi-)reflective subcategory of  $\mathsf{Str}(\Pi)$  closed under  $\lambda$ -directed colimits.

• The embedding  $\mathsf{Str}(\Pi, \mathcal{A}) \hookrightarrow \mathsf{Str}(\Pi)$  has a left adjoint

$$\mathsf{Str}(\Pi) \xrightarrow{R} \mathsf{Str}(\Pi, \mathcal{A})$$
 (the reflector)

- Consequence:  $Str(\mathcal{H})$  is locally  $\lambda$ -presentable:
  - $\triangleright \operatorname{\mathsf{Pres}}_{\lambda}(\operatorname{\mathsf{Str}}(\mathscr{H})) \text{ is essentially small } (\mathscr{C}(X,-): \mathscr{C} \to \operatorname{\mathsf{Set}} \text{ is } \lambda \text{-accessible})$
  - $\triangleright$  each  $X \in \mathsf{Str}(\mathscr{H})$  is a  $\lambda$ -directed colimit of  $\lambda$ -presentable objects
- $X \in \operatorname{Pres}_{\lambda}(\operatorname{Str}(\mathscr{H}))$  iff  $X \cong R(Y)$  for some  $Y \in \operatorname{Pres}_{\lambda}(\operatorname{Str}(\Pi))$ 
  - $\, \triangleright \ \, \mathsf{Str}(\Pi) \rightsquigarrow \mathsf{card}\, X, \mathsf{card}\, \mathsf{E}(X) < \lambda$
  - $\triangleright$  Pos  $\rightsquigarrow$  finite posets
  - $\triangleright$  Met  $\rightsquigarrow$  countable spaces

• Let [X, Y] denote the  $\Pi$ -structure on  $\mathsf{Str}(\mathscr{H})(X, Y)$  defined point-wise:

 $[X,Y] \models \alpha(f_1,\ldots,f_n) :\iff Y \models \alpha(f_1(x),\ldots,f_n(x)) \text{ for all } x \in X$ 

• [-,-] is part of a closed (symmetric) monoidal structure on  $\mathsf{Str}(\Pi)$ 

- This structure inherited by  $\mathsf{Str}(\mathscr{H})$  via  $\mathsf{Str}(\Pi) \xrightarrow{R} \mathsf{Str}(\mathscr{H})$ :
  - $\triangleright \ X \otimes_{\mathscr{H}} Y := R(X \otimes Y) \text{ and } I = RI_0$
  - $\,\triangleright\,\,$  the Cartesian closed structure on  $\mathsf{Pos}$
  - $\triangleright$  the Manhattan metric:  $(X \times Y, d)$  where

 $d((x_1, y_1), (x_2, y_2)) := \min(d_X(x_1, x_2) + d_Y(y_1, y_2), 1)$ 

#### Proposition

 $\mathsf{Str}(\mathscr{H})$  is locally  $\lambda\text{-presentable}$  as a (symmetric) monoidal closed category.

- Idea:  $\operatorname{Pres}_{\lambda}(\operatorname{Str}(\mathscr{H}))$  is closed under  $\otimes_{\mathscr{H}}$  and  $I \in \operatorname{Pres}_{\lambda}(\operatorname{Str}(\mathscr{H}))$
- internal  $\lambda$ -presentable objects = external  $\lambda$ -presentable objects, i.e.

$$[X, -]: \mathsf{Str}(\mathscr{H}) \to \mathsf{Str}(\mathscr{H}) \text{ is } \lambda \text{-accessible} \qquad (X \in \mathsf{Pres}_{\lambda}(\mathsf{Str}(\mathscr{H})))$$

•  $T: \mathsf{Str}(\mathscr{H}) \to \mathsf{Str}(\mathscr{H})$  is **enriched** if

 $[X,Y] \models R(f_1,\ldots,f_n)$  implies  $[TX,TY] \models R(Tf_1,\ldots,Tf_n)$ 

#### - Relational Algebraic Theories -

Universal algebra for enriched  $\lambda$ -accessible monads on  $\mathsf{Str}(\mathscr{H})$ 

- $\operatorname{Pres}_{\lambda}(\operatorname{Str}(\mathscr{H})) = \operatorname{internally} \lambda \operatorname{-presentable objects} = \operatorname{arities of operations}$
- Relations from  $\Pi$  afford an equations-as-relations perspective

# Algebras in $\mathsf{Str}(\mathscr{H})$

- Signature  $\Sigma$ : operations equipped with  $ar(\sigma) \in \mathsf{Pres}_{\lambda}(\mathsf{Str}(\mathscr{H}))$
- $\Sigma$ -algebra:  $\mathscr{H}$ -model A equipped with relation-preserving maps

$$\sigma_A \colon [\mathsf{ar}(\sigma), A] \to A$$

• homomorphisms: relation-preserving map  $A \to B$  such that

$$\begin{split} & [\operatorname{ar}(\sigma), A] \xrightarrow{\sigma_A} A \\ & h \cdot (-) \bigcup_{\substack{h \cdot (-) \\ [\operatorname{ar}(\sigma), B] \xrightarrow{\sigma_B} B}} B } h(\sigma_A(a)) = \sigma_B(h(a)) \end{split}$$

 $\mathsf{Alg}\,\Sigma$  denotes the category of  $\Sigma\text{-algebras}$  and homomorphisms

## Example: Algebras in $\mathsf{Pos}$

- Arities of operations = finite posets (carried by natural numbers)
- Consider  $\Sigma = \{\sigma\}$  where  $\operatorname{\mathsf{ar}}(\sigma) = \mathbf{2} := (0 < 1)$
- $\Sigma$ -algebra: poset A with monotone map  $\sigma_A : [\mathbf{2}, A] \to A$
- Equivalently: a monotone partial map

$$\bar{\sigma} \colon A \times A \to A, \qquad \bar{\sigma}(a_0, a_1) := \sigma(f) \text{ where } f(i) = a_i$$

•  $\bar{\sigma}(a,b)$  defined if  $a \leq b$  in A

 $\operatorname{ar}(\sigma)$  is the domain of definition of  $\sigma$ !

•  $\operatorname{Alg}(\Sigma) \cong \operatorname{Alg}(H_{\Sigma})$  (as concrete categories):

$$H_{\Sigma}X := \coprod_{\sigma \in \Sigma} [\operatorname{ar}(\sigma), X] \qquad (\lambda \text{-accessible!})$$

- Consequences:
  - $\vartriangleright \ \ \text{The forgetful functor } U\colon \ \mathsf{Alg}(\Sigma)\to\mathsf{Str}(\mathscr{H}) \text{ is } \lambda\text{-accessible}$
  - $\triangleright$  Alg( $\Sigma$ ) is locally  $\lambda$ -presentable
  - $\triangleright \ U$  has a left adjoint  $F \colon \mathsf{Str}(\mathscr{H}) \to \mathsf{Alg}(\Sigma)$

### Relational algebraic theories

•  $\Sigma$ -Terms: least set  $T_{\Sigma}(X) \supseteq X$  such that

 $\sigma(f) \in T_{\Sigma}(X)$  for each  $\sigma \in \Sigma$  and map  $|\operatorname{\mathsf{ar}}(\sigma)| \xrightarrow{f} T_{\Sigma}(X)$ 

• Variable assignments are relation-preserving  $e: X \to A \dots$ 

 $T_{\Sigma}(X) \xrightarrow{e^{\#}} A, \qquad e^{\#}(\sigma(s,t)) = \sigma_A(e^{\#}(s), e^{\#}(t)) \text{ possibly undefined!}$ 

- $\Sigma$ -relations: expression  $\Gamma \vdash R(t_1, \ldots, t_n)$
- $A \models \Gamma \vdash s \leq t$  if for every monotone  $f \colon \Gamma \to A$

$$f^{\#}(s), f^{\#}(t)$$
 defined;  $A \models f^{\#}(s) \le f^{\#}(t)$ 

### FROM THEORIES TO MONADS

#### Theorem

There is an assignment  $\mathbf{T} \mapsto M_{\mathbf{T}}$  of each relational algebraic theory  $\mathbf{T}$  to an enriched  $\lambda$ -accessible monad  $M_{\mathbf{T}}$ . Moreover,  $\mathsf{Alg}(\mathbf{T}) \cong \mathsf{Alg}(M_{\mathbf{T}})$ .

- $\Sigma$  has a presentation as a  $\lambda$ -accessible functor
- $Alg(\mathbf{T})$  is a *reflective* subcategory of  $Alg \Sigma$  closed under  $\lambda$ -directed colimits
- preservation of models: Beck's monadicity theorem



The ensuing monad  $M_{\mathbf{T}}$  is the *free algebra monad* of  $\mathbf{T}$ 

## Relational Logic

Sound/complete sequent calculus for relational algebraic reasoning:

$$X \vdash \downarrow t \pmod{(\text{"definedness"})} \quad X \vdash \alpha(t_1, \dots, t_{\mathsf{ar}(\alpha)}) \pmod{(\text{"relational"})}$$

• "elimination rule for arity conditions" concludes definedness of operations:

$$\frac{\{X \vdash \alpha(f \cdot g) \mid \mathsf{ar}(\sigma) \models \alpha(g)\} \cup \{X \vdash \downarrow f(i) \mid i \in \mathsf{ar}(\sigma)\}}{X \vdash \downarrow \sigma(f)}$$

side condition: 
$$\operatorname{ar}(\alpha) \xrightarrow{g} \operatorname{ar}(\sigma) \xrightarrow{f} T_{\Sigma}(X)$$

#### Theorem

The following are equivalent:

- $X \vdash \alpha(f)$  is derivable in the relational logic of  $\mathbb{T}$
- every  $\mathbb{T}$ -algebra satisfies  $X \vdash \alpha(f)$

### FREE **T**-ALGEBRAS, SYNTACTICALLY

- Define  $FX := \{t \in T_{\Sigma}(X) \mid X \vdash \downarrow t\}$
- Quotient FX by the equivalence relation

 $s \sim t : \iff X \vdash s = t$  is derivable

•  $FX/\sim$  has structure of  $\mathscr{H}$ -model with relations

 $FX/\sim \models \alpha(t) :\iff X \vdash \alpha(t)$  is derivable

#### THEOREM

 $FX/\sim$  carries the structure of a free **T**-algebra X; the universal morphism is  $\eta: x \mapsto [x]$ .

# Concluding remarks

- Relational algebraic theories: universal algebra for monads on  $\mathsf{Str}(\mathscr{H})$ 
  - $\triangleright$  important:  $Str(\mathscr{H})$  is locally presentable as a closed category
  - ▷ enrichment relates to the use of relation-preserving operations
  - $\,\triangleright\,\,$  Theory-to-monad direction also holds if  $\kappa \leq \lambda$
- Relational logic: sound and complete sequent system
  - $\triangleright$  syntactic description of the free algebra monad of a theory
- Future work includes:
  - $\triangleright$  treatment of further enrichments
  - $\triangleright$  expand to locally presentable categories (e.g. Cat, Nom, ...)
  - $\triangleright$  graded relational algebraic theories for graded monads

#### m.c.ford@liacs.leidenuniv.nl

