triposes and toposes through arrow algebras

Umberto Tarantino

5 June 2024, DutchCATs

Università degli Studi di Milano

[Introduction and motivation](#page-1-0)

Let *L* be a locale.

For every set *I*, the set L^I is a Heyting algebra under pointwise order and operations; the functor *L*[−] : Set^{op} → HeytAlg is a *tripos*.

Starting from *L* [−] we can build a category Set[*L* [−]] where:

- objects are pairs (*X*, ∼*X*) of a set *X* together with a *partial equivalence relation* ∼*^X* ∈ *L X*×*X* ;
- morphisms (*X*, ∼*X*) → (*Y*, ∼*Y*) are *functional relations* $F \in L^{X \times Y}$.

```
Proposition (Higgs, '73)
Set[L^-] \simeq Sh(L).
```
The previous construction is a first example of the *tripos-to-topos construction*.

Knowing that a topos can be presented as Set[*P*] for some tripos *P* allows us to reduce its *internal* logic to the *external* logic of *P*.

Besides localic toposes, another fundamental class of toposes arising from the tripos-to-topos construction is that of realizability toposes, built from *partial combinatory algebras* (PCAs).

For every PCA A, the *realizability tripos* over A is defined by letting $P_A(I) := DA^I$ where DA is the set of downward-closed subsets of A.

Example

Kleene's first model K_1 is defined on N by letting $n \cdot m$ be the result of the *n*-th partial recursive function on input *m* whenever defined.

Ouestion

How do we unify the two frameworks, "algebraically"?

A first answer

Implicative algebras are algebraic structures inducing triposes in such a way that every tripos can be seen as an implicative tripos.

Our answer

Arrow algebras generalize implicative algebras, perfectly factoring through the construction of realizability toposes from PCAs.

[Arrow algebras](#page-6-0)

Arrow structures

An *arrow structure* is a complete poset (A, \preccurlyeq) endowed with a binary operation \rightarrow : $A \times A \rightarrow A$ such that

if $a' \preccurlyeq a$ and $b \preccurlyeq b'$, then $a \to b \preccurlyeq a' \to b'$.

Elements of *A* should be thought of as *truth values*, or *pieces of evidence.* We refer to \preccurlyeq as the *evidential* order.

Separator

A *separator* on an arrow structure $(A, \preccurlyeq, \rightarrow)$ is a subset $S \subseteq A$ such that:

- 1. if $a \in S$ and $a \preccurlyeq b$, then $b \in S$;
- 2. if $a \to b \in S$ and $a \in S$, then $b \in S$;

3. *S* contains the following *combinators*:

$$
\cdot \ \mathsf{k} \coloneqq \mathsf{\Lambda}_{a,b} \, a \to b \to a;
$$

- \cdot s := \downarrow _{*a*,*b*,*c*}(*a* \rightarrow *b* \rightarrow *c*) \rightarrow (*a* \rightarrow *b*) \rightarrow (*a* \rightarrow *c*);
- \cdot a $:= \bigwedge_{a,(b_i)_{i\in I},(c_i)_{i\in I}} (x_{i\in I} \, a \to b_i \to c_i) \to a \to (x_{i\in I} \, b_i \to c_i).$

Arrow algebra

An *arrow algebra* A is a quadruple $(A, \preccurlyeq, \rightarrow, S)$ where $(A, \preccurlyeq, \rightarrow)$ is an arrow structure and *S* is a separator on it.

Examples

- 1. Implicative algebras.
- 2. Frames, with the separator $\{\top\}$.
- 3. The poset *DA*, for a PCA A, with implication:

 $\alpha \to \beta := \iota$ { $c \in A \mid (\forall a \in \alpha)$ (ca \downarrow and $ca \in \beta$ }

and separator $\{ \alpha \in DA \mid \exists r \in \alpha \cap A^{\#} \}$.

Given an arrow algebra A, the relation:

 $a \vdash b \iff a \to b \in S$

is a preorder, and (A, \vdash) carries the structure of a Heyting prealgebra. We refer to \vdash as the *logical* order.

For any set *I*, pointwise order and implication define an arrow structure on the set A^I , which we can turn into an arrow algebra A*^I* with the *uniform power separator*:

$$
\phi \in S^1 \iff \bigwedge_{i \in I} \phi(i) \in S
$$

We denote with \vdash_l the logical order in \mathcal{A}^l ; explicitly:

$$
\phi \vdash_i \psi \iff \bigwedge_{i \in I} \phi(i) \to \psi(i) \in S
$$

Theorem

For any arrow algebra A*, the functor:*

$$
P_{\mathcal{A}}: Set^{op} \to HeytPre
$$
\n
$$
\uparrow \qquad \qquad \downarrow \longrightarrow (A^l, \vdash_l)
$$
\n
$$
\downarrow \longrightarrow (\mathcal{A}^l, \vdash_l)
$$
\n
$$
\downarrow \longrightarrow (A^l, \vdash_l)
$$

is a tripos having $id_A \in P_A(A)$ *as generic predicate.*

Notation

We denote with $AT(A)$ the *arrow topos* Set[P_A].

[Implicative morphisms](#page-12-0)

Implicative morphisms underline the privileged role of the logical order and implication in arrow algebras.

Implicative morphism

Given two arrow algebras A and B, an *implicative morphism* $f: \mathcal{A} \rightarrow \mathcal{B}$ is a function $f: \mathcal{A} \rightarrow \mathcal{B}$ satisfying:

- 1. $f(a) \in S_B$ for all $a \in S_A$;
- 2. $\lambda_{a,a'\in A} f(a \to a') \to f(a) \to f(a') \in S_B;$
- 3. for any subset $X \subseteq A \times A$,

if $\bigwedge a \to a' \in S_A$ then $\bigwedge f(a) \to f(a') \in S_B$. (*a*,*a* ⁰)∈*X* (*a*,*a* ⁰)∈*X*

Morphisms $A \rightarrow B$ can be ordered by restricting \vdash_A :

$$
f \vdash f' \iff \bigwedge_{a} f(a) \to f'(a) \in S_B
$$

We denote with ArrAlg the preorder-enriched category of arrow algebras and implicative morphisms.

Lemma

Every implicative morphism is isomorphic to a monotone one.

some examples

Examples

- 1. Frame homomorphisms are implicative morphisms.
- 2. Morphisms of PCAs $DA \rightarrow DB$ are implicative morphisms.
- 3. For any partial applicative morphism of PCAs $f : A \rightarrow \mathbb{B}$, the function:

$$
\widetilde{f}: DA \to DB \qquad \widetilde{f}(\alpha) := \bigcup_{a \in \alpha} f(a)
$$

is an implicative morphism $D \mathbb{A} \to D \mathbb{B}$. The assignment $f \mapsto f$ defines a 2-functor oPCA_D \rightarrow ArrAlg such that the map

```
oPCA<sub>D</sub>(A, B) \rightarrow ArrAlg(DA, D B)
```
(preserves and) reflects the order.

[Transformations of arrow triposes](#page-16-0)

Implicative morphisms give rise to left exact transformations of arrow triposes, that is, (pseudo)natural transformations whose components are monotone maps preserving finite meets.

Proposition

For any implicative morphism $f : A \rightarrow B$ *, the map*

$$
\Phi_f^+ : P_{\mathcal{A}} \to P_{\mathcal{B}} \qquad (\Phi_f^+)_{\mathsf{I}}(\phi) := f \circ \phi
$$

is a left exact transformation of triposes. The assignment $f \mapsto \Phi_f^+$ *f defines a 2-functor* ArrAlg → Triplex(Set)*, where* Triplex(Set) *is the preorder-enriched category of triposes and left exact transformations.*

More interestingly, the converse is also true.

Proposition *The 2-functor* ArrAlg \rightarrow Trip_{lex}(Set) *is 2-fully faithful. Explicitly, this means that for any arrow algebras* A *and* B *there is an equivalence of preorder categories:*

 $ArrAlg(A, B) \simeq Trip_{lex}(Set)(P_A, P_B)$

Definition

A *geometric morphism* $Q \rightarrow P$ is a left exact transformation Φ : *P* → *Q* having a *right adjoint* Ψ : *Q* → *P*, meaning that Φ*^I* a Ψ*^I* : *Q*(*I*) → *P*(*I*) as maps of preorders for any set *I*.

In this perspective, it makes sense to try to characterize those implicative morphisms whose induced left exact transformation of arrow triposes has a right adjoint.

Computationally dense implicative morphism

An implicative morphism $f : A \rightarrow B$ is *computationally dense* if it admits a right adjoint in ArrAlg, that is, if there exists an implicative morphism $h : \mathcal{B} \to \mathcal{A}$ such that $f h \vdash id_B$ and $id_A \vdash fh$.

Examples

- 1. Frame homomorphisms coincide precisely with computationally dense implicative morphisms.
- 2. A partial applicative morphism of PCAs $f : A \rightarrow \mathbb{B}$ is computationally dense if and only if so is $f : D \mathbb{A} \to D \mathbb{B}$ as an implicative morphism. The assignment $f \mapsto \widetilde{f}$ defines a 2-functor oPCA_{D.cd} \rightarrow ArrAlg_{cd} such that the map

 $oPCA_{D,cd}(\mathbb{A}, \mathbb{B}) \rightarrow ArrAlg_{cd}(D\mathbb{A}, D\mathbb{B})$

is an equivalence of preorder categories.

The assignment $f \mapsto \Phi_f^+$ *f* restricts to a 2-functor:

$$
{\sf ArrAlg}_{\sf cd} \; \underline{\longrightarrow} \; {\sf Trip}_{\sf geo}({\sf Set})
$$

where $\text{Tri}_{\text{geo}}(\text{Set})$ is the preorder-enriched category of triposes and left exact transformations having a right adjoint between them.

A computationally dense $f : A \rightarrow B$ with right adjoint *h* induces the geometric morphism:

As in the previous case, the converse is also true.

Theorem

The 2-functor ArrAlg_{cd} \rightarrow Trip_{geo}(Set) *is 2-fully faithful.*

Explicitly, this means that for any arrow algebras A *and* B *there is an equivalence of preorder categories:*

 $ArrAlg_{cd}(A, B) \simeq Trip_{gen}(Set)(P_A, P_B)$

nuclei

Nucleus

Let A be an arrow algebra. A *nucleus j* on A is a function $j: A \rightarrow A$ such that:

1. if $a \preccurlyeq b$ then *ja* \preccurlyeq *jb*;

2.
$$
\lambda_{a,b\in A}j(a \to b) \to ja \to jb \in S;
$$

- 3. f*a*∈*^A a* → *ja* ∈ *S*;
- 4. f*a*∈*^A jja* → *ja* ∈ *S*.

Example

Nuclei on a frame are precisely nuclei in the localic sense.

Every nucleus *j* on $\mathcal{A} = (A, \preccurlyeq, \rightarrow, S)$ determines an arrow algebra $\mathcal{A}_j = (A, \preccurlyeq, \rightarrow_j, S_j)$ over the same poset, but with a new implication and separator:

$$
a \rightarrow_j b := a \rightarrow jb \qquad S_j := \{ a \in A \mid ja \in S \}
$$

Lemma

id_A is a computationally dense implicative morphism $\mathcal{A} \rightarrow \mathcal{A}_j$, with right adjoint *j*.

Theorem

For any arrow algebra A*, the construction of the arrow tripos yields an equivalence of preorder categories:*

$$
\mathrm{N}(\mathcal{A})^{\mathrm{op}} \simeq \mathsf{SubTrip}(P_{\mathcal{A}})
$$

Moreover, every subtripos of P^A *is up to equivalence of the form:*

for some $j \in N(\mathcal{A})$ *.*

Thank you!