Categorical Structure in Theory of Arithmetic

Lingyuan Ye Feb. 2nd, 2024, DutchCATS

ILLC, University of Amsterdam

Introduction

Proposition A subset of \mathbb{N} is r.e. iff it is definable by a Σ_1 -formula.

A function $f: \mathbb{N}^k \to \mathbb{N}$ is provably total (recursive) in \mathbb{T} if:

- There is a Σ_1 -formula $\varphi_f(\bar{x}, y)$ defining the graph of f;
- $\mathbb{T} \vdash \forall \overline{x} \exists_! y \varphi_f(\overline{x}, y).$

Proposition A subset of \mathbb{N} is r.e. iff it is definable by a Σ_1 -formula.

A function $f: \mathbb{N}^k \to \mathbb{N}$ is provably total (recursive) in \mathbb{T} if:

There is a Σ₁-formula φ_f(x̄, y) defining the graph of f;
T ⊢ ∀x̄∃ιγφ_f(x̄, y).

Proposition

A subset of \mathbb{N} is r.e. iff it is definable by a Σ_1 -formula.

A function $f: \mathbb{N}^k \to \mathbb{N}$ is provably total (recursive) in \mathbb{T} if:

- There is a Σ_1 -formula $\varphi_f(\bar{x}, y)$ defining the graph of f;
- $\mathbb{T} \vdash \forall \overline{x} \exists_! y \varphi_f(\overline{x}, y).$

Proposition

A subset of \mathbb{N} is r.e. iff it is definable by a Σ_1 -formula.

A function $f: \mathbb{N}^k \to \mathbb{N}$ is provably total (recursive) in \mathbb{T} if:

- There is a Σ_1 -formula $\varphi_f(\bar{x}, y)$ defining the graph of f;
- $\mathbb{T} \vdash \forall \overline{x} \exists_! y \varphi_f(\overline{x}, y).$

Complexity and Arithmetic – Cont.

Logicians have considered a wide variety of arithmetic theories,

• PA, *I*Σ_{*n*}, EA, PA⁻, *Q*, *S*^{*k*}_{*n*}, ...

When \mathbb{T} is $I\Sigma_1$ (PA but with induction restricted to Σ_1 -formulas):

Theorem (*)

Provably total functions in $I\Sigma_1$ are exactly p.r. functions.

- + Another equivalent way of characterising p.r. functions.
- + $\mathfrak{R}(\mathbb{T})$ is intimately related to the proof-theoretic ordinal of $\mathbb{T}.$
- Most/All proofs are like "programs on machine code".

We intend to provide a *structural* understanding of (\star) .

Complexity and Arithmetic – Cont.

Logicians have considered a wide variety of arithmetic theories,

• PA,
$$I \Sigma_n$$
, EA, PA⁻, Q, S_n^k , ...

When \mathbb{T} is $I\Sigma_1$ (PA but with induction restricted to Σ_1 -formulas):

Theorem (*)

Provably total functions in $I\Sigma_1$ are exactly p.r. functions.

- + Another equivalent way of characterising p.r. functions.
- + $\mathfrak{R}(\mathbb{T})$ is intimately related to the proof-theoretic ordinal of $\mathbb{T}.$
- Most/All proofs are like "programs on machine code".

We intend to provide a *structural* understanding of (\star) .

Complexity and Arithmetic – Cont.

Logicians have considered a wide variety of arithmetic theories,

• PA,
$$I \Sigma_n$$
, EA, PA⁻, Q, S_n^k , ...

When \mathbb{T} is $I\Sigma_1$ (PA but with induction restricted to Σ_1 -formulas):

Theorem (*****)

Provably total functions in $I\Sigma_1$ are exactly p.r. functions.

- + Another equivalent way of characterising p.r. functions.
- + $\mathfrak{R}(\mathbb{T})$ is intimately related to the proof-theoretic ordinal of \mathbb{T} .
- Most/All proofs are like "programs on machine code".

We intend to provide a *structural* understanding of (\star) .

Coherent logic is the fragment of first-order logic with:

- Formulas built up from $\top, \land, \bot, \lor, \exists$;
- Proofs formulated in sequent style $\varphi \vdash_{\overline{x}} \psi$;

Categorical Logic – Cont.

Any $\mathbb T$ has a syntactic category $\mathcal C[\mathbb T]$ encapsulating itself:

- Objects are formulas (with contexts) in \mathbb{T} / \sim_{α} ;
- Morphisms $\theta: \varphi(\overline{x}) \to \psi(\overline{y})$ are \mathbb{T} -functional formulas / $\sim_{\mathbb{T}}$:

$$\theta(\bar{x}, \bar{y}) \vdash_{\bar{x}, \bar{y}} \varphi(\bar{x}) \land \psi(\bar{y})$$
$$\varphi(\bar{x}) \vdash_{\bar{x}} \exists \bar{y} \theta(\bar{x}, \bar{y})$$
$$\theta(\bar{x}, \bar{y}) \land \theta(\bar{x}, \bar{z}) \vdash_{\bar{x}, \bar{y}, \bar{z}} \bar{y} = \bar{z}$$

Functorial Semantics

Sending a model *M* to a functor $\varphi \mapsto \llbracket \varphi \rrbracket_M$ gives an equivalence

 $Coh(\mathcal{C}[\mathbb{T}], Set) \simeq Mod(\mathbb{T}).$

Categorical Logic – Cont.

Any \mathbb{T} has a *syntactic category* $\mathcal{C}[\mathbb{T}]$ encapsulating itself:

- Objects are formulas (with contexts) in T / ~_α;
- Morphisms $\theta: \varphi(\overline{x}) \to \psi(\overline{y})$ are \mathbb{T} -functional formulas / $\sim_{\mathbb{T}}$:

$$\begin{aligned} \theta(\overline{x},\overline{y}) \vdash_{\overline{x},\overline{y}} \varphi(\overline{x}) \wedge \psi(\overline{y}) \\ \varphi(\overline{x}) \vdash_{\overline{x}} \exists \overline{y} \theta(\overline{x},\overline{y}) \\ \theta(\overline{x},\overline{y}) \wedge \theta(\overline{x},\overline{z}) \vdash_{\overline{x},\overline{y},\overline{z}} \overline{y} = \overline{z} \end{aligned}$$

Functorial Semantics

Sending a model M to a functor $\varphi \mapsto \llbracket \varphi \rrbracket_M$ gives an equivalence

 $Coh(\mathcal{C}[\mathbb{T}], Set) \simeq Mod(\mathbb{T}).$

We want to find a suitable *coherent* theory of arithmetic \mathbb{T} that faithfully represents the relevant fragment of $I\Sigma_1$:

Theorem (Correctness)

The interpretation of \mathbb{T} into $I\Sigma_1$ induces an equivalence

 $\mathcal{C}[\mathbb{T}] \simeq \mathcal{C}[\mathit{I}\Sigma_1]_{\Sigma_1},$

where $C[I\Sigma_1]_{\Sigma_1}$ is the full subcategory of Σ_1 -formulas.

Given such \mathbb{T} , the *subject* of (\star) can be easily recognised in $\mathcal{C}[\mathbb{T}]$:

• Let [n] denote $\bigwedge_{1 \le i \le n} x_i = x_i$. We think of [1] as the natural numbers in $\mathcal{C}[\mathbb{T}]$, with $[n] \cong [1]^n$ in $\mathcal{C}[\mathbb{T}]$.

Observation $C[\mathbb{T}]([n], [1])$ corresponds to provably total functions of $\mathbb{T}(I\Sigma_1)$.

Given such \mathbb{T} , the *subject* of (\star) can be easily recognised in $\mathcal{C}[\mathbb{T}]$:

• Let [n] denote $\bigwedge_{1 \le i \le n} x_i = x_i$. We think of [1] as the natural numbers in $\mathcal{C}[\mathbb{T}]$, with $[n] \cong [1]^n$ in $\mathcal{C}[\mathbb{T}]$.

Observation

 $\mathcal{C}[\mathbb{T}]([n], [1])$ corresponds to provably total functions of $\mathbb{T}(I\Sigma_1)$.

According to categorical logic, the standard model $\ensuremath{\mathbb{N}}$ induces:

$$\mathcal{C}[\mathbb{T}] \xrightarrow{N} \mathbf{Set}$$

N maps every $\theta : [n] \to [1]$ to the function $\mathbb{N}^n \to \mathbb{N}$ it defines. The hard part of (\star) is to show the images of these morphisms are p.r.

 (\star) now is equivalent to the existence of a factorisation:

where PriM morally is a category with

- Objects being r.e. subsets of \mathbb{N}^n ;
- Morphisms being p.r. functions.

Theorem (Initiality)

 $\mathcal{C}[\mathbb{T}]$ is initial among coherent categories with a parametrised natural numbers object (PNO).

Examples of coherent categories with a PNO:

• Set, PriM, any topos with a natural numbers object ...

Now (*****) is implied by **Correctness + Initiality**.

Theorem (Initiality)

 $C[\mathbb{T}]$ is initial among coherent categories with a parametrised natural numbers object (PNO).

Examples of coherent categories with a PNO:

• Set, PriM, any topos with a natural numbers object ...

Now (*****) is implied by **Correctness** + **Initiality**.

Theorem (Initiality)

 $C[\mathbb{T}]$ is initial among coherent categories with a parametrised natural numbers object (PNO).

Examples of coherent categories with a PNO:

• Set, PriM, any topos with a natural numbers object ...

Now (*****) is implied by **Correctness** + **Initiality**.

Theorem (Initiality)

 $C[\mathbb{T}]$ is initial among coherent categories with a parametrised natural numbers object (PNO).

Examples of coherent categories with a PNO:

• Set, PriM, any topos with a natural numbers object ...

Now (\star) is implied by **Correctness** + **Initiality**.

Coherent Theory of Arithmetic

The design of $\mathbb T$ should take into account the following points:

- Validity: What's present in T should be universally valid in all coherent categories with PNO, and preserved by such functors.
- Strength: $\mathbb T$ should be strong enough for $\mathcal C[\mathbb T]$ to have a PNO.

Validity + Strength = Initiality.

The design of $\mathbb T$ should take into account the following points:

- Validity: What's present in T should be universally valid in all coherent categories with PNO, and preserved by such functors.
- Strength: $\mathbb T$ should be strong enough for $\mathcal C[\mathbb T]$ to have a PNO.

Validity + Strength = Initiality.

We construct ${\mathbb T}$ as follows:

- It has a constant 0.
- It has all primitive function names *PR* as function symbols, plus their corresponding defining axioms.
- Besides coherent logic, it has an induction rule:

 $\frac{\varphi(\bar{x}) \vdash_{\bar{x}} \psi(\bar{x}, 0) \quad \varphi(\bar{x}) \land \psi(\bar{x}, y) \vdash_{\bar{x}, y} \psi(\bar{x}, sy)}{\varphi(\bar{x}) \vdash_{\bar{x}, y} \psi(\bar{x}, y)}$

We construct ${\mathbb T}$ as follows:

- It has a constant 0.
- It has all primitive function names *PR* as function symbols, plus their corresponding defining axioms.
- Besides coherent logic, it has an induction rule:

 $\frac{\varphi(\bar{x}) \vdash_{\bar{x}} \psi(\bar{x}, 0) \quad \varphi(\bar{x}) \land \psi(\bar{x}, y) \vdash_{\bar{x}, y} \psi(\bar{x}, sy)}{\varphi(\bar{x}) \vdash_{\bar{x}, y} \psi(\bar{x}, y)}$

We construct ${\mathbb T}$ as follows:

- It has a constant 0.
- It has all primitive function names *PR* as function symbols, plus their corresponding defining axioms.
- Besides coherent logic, it has an induction rule:

$$\frac{\varphi(\bar{\mathbf{x}}) \vdash_{\bar{\mathbf{x}}} \psi(\bar{\mathbf{x}}, 0) \quad \varphi(\bar{\mathbf{x}}) \land \psi(\bar{\mathbf{x}}, y) \vdash_{\bar{\mathbf{x}}, y} \psi(\bar{\mathbf{x}}, sy)}{\varphi(\bar{\mathbf{x}}) \vdash_{\bar{\mathbf{x}}, y} \psi(\bar{\mathbf{x}}, y)}$$

Proof of Initiality

Parametrised Natural Number Object

In a Cartesian category C, an object N is a PNO if we have

$$1 \xrightarrow{0} N \xleftarrow{s} N$$

such that for any $g : A \to B$ and $h : A \times N \times B \to B$, there is a *unique* map $rec_{g,h} : A \times N \to B$ making the following commute,

Primitive Recursion for PNO

Theorem

For a PNO N in C, there is a unique map $ev : PR \rightarrow Mor(C)$, which is preserved by Cartesian functors preserving the PNO.

Theorem

For a PNO N in C, there is a unique map $ev : PR \rightarrow Mor(C)$, which is preserved by Cartesian functors preserving the PNO.

Proof.

Consider the following diagramme:

Induction Principle of PNO

Theorem

The induction rule is valid for a PNO: For any object X, if

 $X \vDash \varphi(x) \vdash \psi(x,0) \quad X \times N \vDash \varphi(x) \land \psi(x,n) \vdash \psi(x,sn),$

then we also have

 $X \times N \vDash \varphi(x) \vdash \psi(x, n).$

Proof.

Take the usual proof of induction of an NNO to the parametrised version.

Together they have shown Validity.

Induction Principle of PNO

Theorem

The induction rule is valid for a PNO: For any object X, if

 $X \vDash \varphi(x) \vdash \psi(x,0) \quad X \times N \vDash \varphi(x) \land \psi(x,n) \vdash \psi(x,sn),$

then we also have

$$X \times N \vDash \varphi(x) \vdash \psi(x, n).$$

Proof.

Take the usual proof of induction of an NNO to the parametrised version.

Together they have shown Validity.

Induction Principle of PNO

Theorem

The induction rule is valid for a PNO: For any object X, if

 $X \vDash \varphi(x) \vdash \psi(x,0) \quad X \times N \vDash \varphi(x) \land \psi(x,n) \vdash \psi(x,sn),$

then we also have

$$X \times N \vDash \varphi(x) \vdash \psi(x, n).$$

Proof.

Take the usual proof of induction of an NNO to the parametrised version.

Together they have shown Validity.

The remaining work is to show [1] =: N is a PNO in $\mathcal{C}[\mathbb{T}]$:

The remaining work is to show [1] =: N is a PNO in $\mathcal{C}[\mathbb{T}]$:

This requires us to show we can encode finite lists of numbers in \mathbb{T} :

$$rec_{\gamma,\theta}(x,n,y) := \exists l(|l| = sn \land \gamma(x,l_0) \land \forall u < n\theta(l_u,l_{su}) \land l_n = y).$$

This is standard in arithmetic.

To conclude (\star) then, we only need to show **Correctness**:

- It is a classical result in topos theory that classical logic is *conservative* over the coherent fragment.
- We can also use pure proof theory techniques to show this: cut-elimination/normalisation.

Conclusion: (*****) is true by the *structural* reason that the Σ_1 -fragment of $I\Sigma_1$ presents the initial coherent category with PNO.

To conclude (\star) then, we only need to show **Correctness**:

- It is a classical result in topos theory that classical logic is *conservative* over the coherent fragment.
- We can also use pure proof theory techniques to show this: cut-elimination/normalisation.

Conclusion: (\star) is true by the *structural* reason that the Σ_1 -fragment of $I\Sigma_1$ presents the initial coherent category with PNO.

Thanks for Listening!

The Lie I've been Telling

The remaining work is to show [1] =: N is a PNO in $\mathcal{C}[\mathbb{T}]$:

This requires us to show we can encode finite lists of numbers in \mathbb{T} :

 $rec_{\gamma,\theta}(x,n,y) := \exists l(|l| = sn \land \gamma(x,l_0) \land \forall u < n \theta(l_u,l_{su}) \land l_n = y).$

This is standard in meta-logic practice.

The Lie I've been Telling

 Σ_1 -formulas of $I\Sigma_1$ also allow *bounded* universal quantification:

- For the above construction to work, we also requires bounded universal quantifiers in \mathbb{T} , and the actual \mathbb{T} has them.
- For our proof to work, we further need to show **Validity** for them. This can be done in a *cohernet* setting.
- Using this, we can show Strength, and conclude Initiality.