Categorical Structure in Theory of Arithmetic

Lingyuan Ye
Feb. 2nd, 2024, DutchCATS

ILLC, University of Amsterdam

Introduction

Complexity and Arithmetic

Let \mathbb{T} be some sufficiently strong theory of arithmetic. A formula is Σ_{1} if it is provably equivalent to a coherent formula ($T, \wedge, \perp, \vee, \exists$).

Proposition
A subset of \mathbb{N} is r.e. iff it is definable by a Σ_{1}-formula.

A function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is provably total (recursive) in \mathbb{T} if: - There is a Σ_{1}-formula $\varphi_{f}(\bar{x}, y)$ defining the graph of f;

Complexity and Arithmetic

Let \mathbb{T} be some sufficiently strong theory of arithmetic. A formula is Σ_{1} if it is provably equivalent to a coherent formula $(T, \wedge, \perp, \vee, \exists)$.

Proposition

A subset of \mathbb{N} is r.e. iff it is definable by a Σ_{1}-formula.

A function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is provably total (recursive) in \mathbb{T} if: - There is a Σ_{1}-formula $\varphi_{f}(\bar{x}, y)$ defining the graph of f;

This class will be denoted as $\mathfrak{R}(\mathbb{T})$. It measures the strength of \mathbb{T}.

Complexity and Arithmetic

Let \mathbb{T} be some sufficiently strong theory of arithmetic. A formula is Σ_{1} if it is provably equivalent to a coherent formula ($T, \wedge, \perp, \vee, \exists$).

Proposition

A subset of \mathbb{N} is r.e. iff it is definable by a Σ_{1}-formula.
A function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is provably total (recursive) in \mathbb{T} if:

- There is a Σ_{1}-formula $\varphi_{f}(\bar{x}, y)$ defining the graph of f;
- $\mathbb{T} \vdash \forall \bar{x} \exists!y \varphi_{f}(\bar{x}, y)$.

This class will be denoted as $\Re(\mathbb{T})$. It measures the strength of \mathbb{T}.

Complexity and Arithmetic

Let \mathbb{T} be some sufficiently strong theory of arithmetic. A formula is Σ_{1} if it is provably equivalent to a coherent formula ($T, \wedge, \perp, \vee, \exists$).

Proposition

A subset of \mathbb{N} is r.e. iff it is definable by a Σ_{1}-formula.
A function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is provably total (recursive) in \mathbb{T} if:

- There is a Σ_{1}-formula $\varphi_{f}(\bar{x}, y)$ defining the graph of f;
- $\mathbb{T} \vdash \forall \bar{x} \exists!y \varphi_{f}(\bar{x}, y)$.

This class will be denoted as $\mathfrak{R}(\mathbb{T})$. It measures the strength of \mathbb{T}.

Complexity and Arithmetic - Cont.

Logicians have considered a wide variety of arithmetic theories,

- PA, $I \Sigma_{n}, \mathrm{EA}^{2} \mathrm{PA}^{-}, Q, S_{n}^{k}, \ldots$

When \mathbb{T} is $I \Sigma_{1}$ (PA but with induction restricted to Σ_{1}-formulas):

Another equivalent way of characterising p.r. functions. $\mathfrak{R}(\mathbb{T})$ is intimately related to the nroof-theoretic ordinal of \mathbb{T} Most/All proofs are like "programs on machine code"

We intend to provide a structural understanding of (\star).

Complexity and Arithmetic - Cont.

Logicians have considered a wide variety of arithmetic theories,

- PA, $I_{n}, \mathrm{EAA}^{-\mathrm{PA}^{-}, Q}, S_{n}^{k}, \ldots$

When \mathbb{T} is Σ_{1} (PA but with induction restricted to Σ_{1}-formulas):
Theorem (\star)
Provably total functions in Σ_{1} are exactly p.r. functions.

Most/All proofs are like "programs on machine code"
We intend to provide a structural understanding of $(*)$.

Complexity and Arithmetic - Cont.

Logicians have considered a wide variety of arithmetic theories,

- PA, $I_{n}, \mathrm{EAA}^{-\mathrm{PA}^{-}, Q}, S_{n}^{k}, \ldots$

When \mathbb{T} is Σ_{1} (PA but with induction restricted to Σ_{1}-formulas):

Theorem (\star)

Provably total functions in $I \Sigma_{1}$ are exactly p.r. functions.

+ Another equivalent way of characterising p.r. functions.
$+\mathfrak{R}(\mathbb{T})$ is intimately related to the proof-theoretic ordinal of \mathbb{T}.
- Most/All proofs are like "programs on machine code".

We intend to provide a structural understanding of (\star).

Categorical Logic

Coherent logic is the fragment of first-order logic with:

- Formulas built up from $T, \wedge, \perp, \vee, \exists$;
- Proofs formulated in sequent style $\varphi \vdash_{\bar{x}} \psi$;

Categorical Logic - Cont.

Any \mathbb{T} has a syntactic category $\mathcal{C}[\mathbb{T}]$ encapsulating itself:

- Objects are formulas (with contexts) in $\mathbb{T} / \sim_{\alpha}$;
- Morphisms $\theta: \varphi(\bar{x}) \rightarrow \psi(\bar{y})$ are \mathbb{T}-functional formulas $/ \sim_{\mathbb{T}}$:

$$
\begin{gathered}
\theta(\bar{x}, \bar{y}) \vdash_{\bar{x}, \bar{y}} \varphi(\bar{x}) \wedge \psi(\bar{y}) \\
\varphi(\bar{x}) \vdash_{\bar{x}} \exists \bar{y} \theta(\bar{x}, \bar{y}) \\
\theta(\bar{x}, \bar{y}) \wedge \theta(\bar{x}, \bar{z}) \vdash_{\bar{x}, \bar{y}, \bar{z}} \bar{y}=\bar{z}
\end{gathered}
$$

$\operatorname{Coh}(\mathcal{C}[\mathbb{T}], \operatorname{Set}) \simeq \operatorname{Mod}(\mathbb{T})$.

Categorical Logic - Cont.

Any \mathbb{T} has a syntactic category $\mathcal{C}[\mathbb{T}]$ encapsulating itself:

- Objects are formulas (with contexts) in $\mathbb{T} / \sim_{\alpha}$;
- Morphisms $\theta: \varphi(\bar{x}) \rightarrow \psi(\bar{y})$ are \mathbb{T}-functional formulas $/ \sim_{\mathbb{T}}$:

$$
\begin{gathered}
\theta(\bar{x}, \bar{y}) \vdash_{\bar{x}, \bar{y}} \varphi(\bar{x}) \wedge \psi(\bar{y}) \\
\varphi(\bar{x}) \vdash_{\bar{x}} \exists \bar{y} \theta(\bar{x}, \bar{y}) \\
\theta(\bar{x}, \bar{y}) \wedge \theta(\bar{x}, \bar{z}) \vdash_{\overline{\bar{x}}, \overline{\bar{y}}, \bar{z}} \bar{y}=\bar{z}
\end{gathered}
$$

Functorial Semantics

Sending a model \mathcal{M} to a functor $\varphi \mapsto \llbracket \varphi \rrbracket_{\mathcal{M}}$ gives an equivalence

$$
\operatorname{Coh}(\mathcal{C}[\mathbb{T}], \text { Set }) \simeq \operatorname{Mod}(\mathbb{T})
$$

A Coherent Theory of Arithmetic

We want to find a suitable coherent theory of arithmetic \mathbb{T} that faithfully represents the relevant fragment of $I \Sigma_{1}$:

Theorem (Correctness)

The interpretation of \mathbb{T} into Σ_{1} induces an equivalence

$$
\mathcal{C}[\mathbb{T}] \simeq \mathcal{C}\left[I \Sigma_{1}\right]_{\Sigma_{1}},
$$

where $\mathcal{C}\left[I \Sigma_{1}\right]_{\Sigma_{1}}$ is the full subcategory of Σ_{1}-formulas.

A Coherent Theory of Arithmetic - Cont.

Given such \mathbb{T}, the subject of (\star) can be easily recognised in $\mathcal{C}[\mathbb{T}]$:

- Let [n] denote $\bigwedge_{1 \leq i \leq n} x_{i}=x_{i}$. We think of [1] as the natural numbers in $\mathcal{C}[\mathbb{T}]$, with $[n] \cong[1]^{n}$ in $\mathcal{C}[\mathbb{T}]$.

A Coherent Theory of Arithmetic - Cont.

Given such \mathbb{T}, the subject of (\star) can be easily recognised in $\mathcal{C}[\mathbb{T}]$:

- Let [n] denote $\bigwedge_{1 \leq i \leq n} x_{i}=x_{i}$. We think of [1] as the natural numbers in $\mathcal{C}[\mathbb{T}]$, with $[n] \cong[1]^{n}$ in $\mathcal{C}[\mathbb{T}]$.

Observation

$\mathcal{C}[\mathbb{T}]([n],[1])$ corresponds to provably total functions of $\mathbb{T}\left(I \Sigma_{1}\right)$.

Strategy

According to categorical logic, the standard model \mathbb{N} induces:

$$
\mathcal{C}[\mathbb{T}] \xrightarrow{N} \text { Set }
$$

N maps every $\theta:[n] \rightarrow[1]$ to the function $\mathbb{N}^{n} \rightarrow \mathbb{N}$ it defines. The hard part of (\star) is to show the images of these morphisms are p.r.

Strategy

(\star) now is equivalent to the existence of a factorisation:

where PriM morally is a category with

- Objects being r.e. subsets of \mathbb{N}^{n};
- Morphisms being p.r. functions.

Strategy - Cont.

Such a situation begs for initiality result: $\mathcal{C}[\mathbb{T}]$ should be initial among certain class of categories containing PriM and Set.

Theorem (Initiality)
$C[\mathbb{T}]$ is initial among coherent categories with a parametrised
natural numbams abiont (DN/O)

Examples of coherent categories with a PNO:

- Set, PriM, any topos with a natural numbers object...

Strategy - Cont.

Such a situation begs for initiality result: $\mathcal{C}[\mathbb{T}]$ should be initial among certain class of categories containing PriM and Set.

Theorem (Initiality)

$\mathcal{C}[\mathbb{T}]$ is initial among coherent categories with a parametrised natural numbers object (PNO).

Examples of coherent categories with a PNO: - Set, PriM any topos with a natural numbers object Now (\star) is implied by Correctness + Initiality.

Strategy - Cont.

Such a situation begs for initiality result: $\mathcal{C}[\mathbb{T}]$ should be initial among certain class of categories containing PriM and Set.

Theorem (Initiality)

$\mathcal{C}[\mathbb{T}]$ is initial among coherent categories with a parametrised natural numbers object (PNO).

Examples of coherent categories with a PNO:

- Set, PriM, any topos with a natural numbers object ...

Now (*) is implied by Correctness + Initiality

Strategy - Cont.

Such a situation begs for initiality result: $\mathcal{C}[\mathbb{T}]$ should be initial among certain class of categories containing PriM and Set.

Theorem (Initiality)

$\mathcal{C}[\mathbb{T}]$ is initial among coherent categories with a parametrised natural numbers object (PNO).

Examples of coherent categories with a PNO:

- Set, PriM, any topos with a natural numbers object ...

Now (\star) is implied by Correctness + Initiality.

Coherent Theory of Arithmetic

Towards a Coherent Theory of Arithmetic

The design of \mathbb{T} should take into account the following points:

- Validity: What's present in \mathbb{T} should be universally valid in all coherent categories with PNO, and preserved by such functors.
- Strength: \mathbb{T} should be strong enough for $\mathcal{C}[\mathbb{T}]$ to have a PNO.

Validity + Strength = Initiality.

Towards a Coherent Theory of Arithmetic

The design of \mathbb{T} should take into account the following points:

- Validity: What's present in \mathbb{T} should be universally valid in all coherent categories with PNO, and preserved by such functors.
- Strength: \mathbb{T} should be strong enough for $\mathcal{C}[\mathbb{T}]$ to have a PNO.

Validity + Strength $=$ Initiality.

Construction of Coherent Arithmetic

We construct \mathbb{T} as follows:

- It has a constant 0 .
- It has all primitive function names $P R$ as function symbols, plus their corresponding defining axioms.
- Besides coherent Iogic, it has an induction rule:

Construction of Coherent Arithmetic

We construct \mathbb{T} as follows:

- It has a constant 0 .
- It has all primitive function names $P R$ as function symbols, plus their corresponding defining axioms.
- Besides coherent logic, it has an induction rule:

Construction of Coherent Arithmetic

We construct \mathbb{T} as follows:

- It has a constant 0 .
- It has all primitive function names $P R$ as function symbols, plus their corresponding defining axioms.
- Besides coherent logic, it has an induction rule:

$$
\frac{\varphi(\bar{x}) \vdash_{\bar{x}} \psi(\bar{x}, 0) \quad \varphi(\bar{x}) \wedge \psi(\bar{x}, y) \vdash_{\bar{x}, y} \psi(\bar{x}, s y)}{\varphi(\bar{x}) \vdash_{\bar{x}, y} \psi(\bar{x}, y)}
$$

Proof of Initiality

Parametrised Natural Number Object

In a Cartesian category \mathcal{C}, an object N is a PNO if we have

$$
1 \xrightarrow{0} N<^{s} N
$$

such that for any $g: A \rightarrow B$ and $h: A \times N \times B \rightarrow B$, there is a unique map rec $_{g, h}: A \times N \rightarrow B$ making the following commute,

Primitive Recursion for PNO

Theorem
For a PNO N in \mathcal{C}, there is a unique map ev: $P R \rightarrow \operatorname{Mor}(\mathcal{C})$, which is preserved by Cartesian functors preserving the PNO.

Primitive Recursion for PNO

Theorem

For a PNO N in \mathcal{C}, there is a unique map ev: $P R \rightarrow \operatorname{Mor}(\mathcal{C})$, which is preserved by Cartesian functors preserving the $P N O$.

Proof.

Consider the following diagramme:

Induction Principle of PNO

Theorem

The induction rule is valid for a PNO: For any object X, if

$$
X \vDash \varphi(x) \vdash \psi(x, 0) \quad X \times N \vDash \varphi(x) \wedge \psi(x, n) \vdash \psi(x, s n),
$$

then we also have

$$
X \times N \vDash \varphi(x) \vdash \psi(x, n) .
$$

Together they have shown Validity.

Induction Principle of PNO

Theorem

The induction rule is valid for a PNO: For any object X, if

$$
X \vDash \varphi(x) \vdash \psi(x, 0) \quad X \times N \vDash \varphi(x) \wedge \psi(x, n) \vdash \psi(x, s n),
$$

then we also have

$$
X \times N \vDash \varphi(x) \vdash \psi(x, n) .
$$

Proof.

Take the usual proof of induction of an NNO to the parametrised version.

Together they have shown Validity.

Induction Principle of PNO

Theorem

The induction rule is valid for a PNO: For any object X, if

$$
X \vDash \varphi(x) \vdash \psi(x, 0) \quad X \times N \vDash \varphi(x) \wedge \psi(x, n) \vdash \psi(x, s n),
$$

then we also have

$$
X \times N \vDash \varphi(x) \vdash \psi(x, n) .
$$

Proof.

Take the usual proof of induction of an NNO to the parametrised version.

Together they have shown Validity.

The remaining work is to show [1] =: N is a PNO in $\mathcal{C}[\mathbb{T}]$:

PNO in $\mathcal{C}[\mathbb{T}]$

The remaining work is to show [1] =: N is a PNO in $\mathcal{C}[\mathbb{T}]$:

This requires us to show we can encode finite lists of numbers in \mathbb{T} :

$$
\operatorname{rec}_{\gamma, \theta}(x, n, y):=\exists l\left(|l|=\operatorname{sn} \wedge \gamma\left(x, l_{0}\right) \wedge \forall u<n \theta\left(l_{u}, l_{s u}\right) \wedge l_{n}=y\right)
$$

This is standard in arithmetic.

Remark on Correctness

To conclude (\star) then, we only need to show Correctness:

- It is a classical result in topos theory that classical logic is conservative over the coherent fragment.
- We can also use pure proof theory techniques to show this: cut-elimination/normalisation.

Conclusion: (\star) is true by the structural reason that the
Σ_{1}-fragment of $I \Sigma_{1}$ presents the initial coherent category with PNO.

Remark on Correctness

To conclude (\star) then, we only need to show Correctness:

- It is a classical result in topos theory that classical logic is conservative over the coherent fragment.
- We can also use pure proof theory techniques to show this: cut-elimination/normalisation.

Conclusion: (\star) is true by the structural reason that the Σ_{1}-fragment of $I \Sigma_{1}$ presents the initial coherent category with PNO.

Thanks for Listening!

The Lie I've been Telling

The remaining work is to show [1] =: N is a PNO in $\mathcal{C}[\mathbb{T}]$:

This requires us to show we can encode finite lists of numbers in \mathbb{T} :

$$
\operatorname{rec}_{\gamma, \theta}(x, n, y):=\exists l\left(|l|=\operatorname{sn} \wedge \gamma\left(x, l_{0}\right) \wedge \forall u<n \theta\left(l_{u}, l_{s u}\right) \wedge l_{n}=y\right)
$$

This is standard in meta-logic practice.

The Lie I've been Telling

Σ_{1}-formulas of $I \Sigma_{1}$ also allow bounded universal quantification:

- For the above construction to work, we also requires bounded universal quantifiers in \mathbb{T}, and the actual \mathbb{T} has them.
- For our proof to work, we further need to show Validity for them. This can be done in a cohernet setting.
- Using this, we can show Strength, and conclude Initiality.

