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Persistence modules

Persistence Modules

A persistence module is a functor

I → A,

for a poset category I and abelian category A.

A is often VectF or grVectF.

Different types of posets I correspond to specific types of persistence
modules.
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Persistence modules

Modules From Filtrations

Suppose we keep track of H0 at each step in the filtration. This
defines a functor P : [n] → Vect (a persistence module!).

Maps i 7→ i + 1 correspond to inclusion maps in the filtration, which
induce maps in H0.

Notice there’s a related functor P : R → Vect.

Using additional filter parameters is the usual way to get
higher-dimensional persistence modules.
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Persistence modules

Zig-Zag Grid Modules

We focus on d-parameter zig-zag grid persistence modules, where
I = I1 × I2 × . . .× Id , where each In is nontrivial and finite. We
consider the objects as subsets of R (but possibly with different
ordering).

Rd is our parameter space

Let’s consider persistence modules as stratifying a parameter space.

Example 1:
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Persistence modules

Combinatorial Entrance Path Category

I cubulates Rd , and we stratify Rd by declaring each i cube of the
cubulation to be an i-strata. Call this stratified space (Rd ; I ) (a cubical
manifold).

A category naturally associated to this stratification is Ent∆(Rd ; I )

Objects: strata of (Rd ; I )

Morphisms: c → c′ iff c is a coface of c′.

Use the notation pModA(X ) := Fun(Ent∆(X; I),A).
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Persistence modules

pModA(X ) := Fun(Ent∆(X; I),A)

Things to notice

Ent∆(X ; I ) has many more objects and morphisms than our original
poset I .

Fun(Ent∆(X; I),A) generalises Fun(I,A).

Here, we forget parameter values and only keep track of the poset
structure of I .
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Algebraic K -theory of persistence modules

Algebraic K -Theory

Algebraic K -theory is a map from (nice) categories to spectra (a
sequence of based topological spaces, along with particular maps
between them).

Associated to a K spectrum, K(C ), we also have K -groups, one for
each n ∈ N≥0. These groups are the homotopy groups of the
spectrum, where

Kn(C ) ∼= colimiπi+n(Ki (C ))

.

K -groups can provide a rich set of invariants of the input category.

E.g., in the case of persistence modules, K0 is the natural home for
invariants like Euler characteristic curves, K1 contains information
about transformations between persistence modules, etc.
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Algebraic K -theory of persistence modules

Main Tool

pMod is an example of a Waldhausen category, which has the following
nice result...

Waldhausen Additivity (1985)

Suppose that A → B → C is a standard split short exact sequence
of Waldhausen categories. Then, there is the following equivalence
of spectra:

K(B) ≃ K(A) ∨K(C ).

To start, can we build a split short exact sequence of categories of
one-parameter persistence modules?
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Algebraic K -theory of persistence modules

A Split Short Exact Sequence

To start, can we build a split short exact sequence of objects in the
category of one-parameter persistence modules?

(let’s use sketches of stratified spaces to mean the category of persistence
modules over them)

This splits! (and is standard) So ...
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Algebraic K -theory of persistence modules

K-theory of Zig-Zag Persistence Modules

To build up the computation for K of one-parameter persistence modules,
we induct on the number of zero-strata.

CLAIM:

BASE CASE:

INDUCTION STEP:
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Algebraic K -theory of persistence modules

K-theory of Zig-Zag Persistence Modules

K -Theory of One-Parameter Persistence Modules (Grady, S.)

Let X be a cubical one-manifold with finite zero-strata. Then there
is an equivalence of spectra

K(pMod(X )) ≃
∨

x1∈X1

K(pMod(x1)) ∨
∨

x0∈X0

K(pMod(x0)),

where Xi is the set of i-strata of X .

Schenfisch February 2, 2024 14 / 25



Algebraic K -theory of persistence modules

K-theory of Zig-Zag Persistence Modules

K -Theory of One-Parameter Persistence Modules (Grady, S.)

Let X be a cubical one-manifold with finite zero-strata. Then there
is an equivalence of spectra

K(pMod(X )) ≃
∨

x1∈X1

K(pMod(x1)) ∨
∨

x0∈X0

K(pMod(x0)),

where Xi is the set of i-strata of X .

Schenfisch February 2, 2024 14 / 25



Algebraic K -theory of persistence modules

Extension to Multi-Parameter Modules

We use a generalisation of the cutting and pasting from before

Additivity For Closed Sub-Stratified Spaces (Grady, S.)

Let X be a cubical manifold and let B denote a closed sub-stratified
space of X. Then there is an equivalence of spectra

K(pMod(X )) ≃ K(pMod(X \ B)) ∨K(pMod(B)).
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Algebraic K -theory of persistence modules

Additivity Over Strata

CLAIM: Let X be a cubical manifold that can be tightly embedded as a
substratified manifold of some (Rd ; I ). The K -theory of persistence
modules over X is equivalent with

To extend to multi-parameter persistence modules, induct on d , the
number of parameters, and on h = maxdn=1{|In|} the height of the
module1.

1where d minimal such that X embeds as a stratified space into (Rd ; I )
Schenfisch February 2, 2024 16 / 25
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Algebraic K -theory of persistence modules

Induction on Height

For the height induction, start with a cubical manifold with height h, then
try to break it into pieces with height less than h (and each piece we
remove needs to be closed in the space containing it).

If a module only has one parameter with maximum height, it’s easy...
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Algebraic K -theory of persistence modules

Induction on Number of Parameters

For the dimension induction, we consider a d-parameter module with
height two. We want to break it into pieces with dimension less than d
(and each piece we remove needs to be closed in the space containing it)
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Algebraic K -theory of persistence modules

Induction on Number of Parameters

How can we break apart the boundary so that each piece looks like a
parameter space with fewer than d parameters?

For d = 1, 2, 3, we can convince ourselves this is possible.

What about arbitrary finite d? Can we always remove a piece so that the
remainder “falls open” into a lower-dimensional space?
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Algebraic K -theory of persistence modules

Cube Unfolding

Ridge Unfoldings of Cubes (DeSplinter, Devadoss, Readyhough,
2020)

Every ridge unfolding of a finite cube will produce a net.

An unfolding of a polytope is the process of cutting along
codimension-two faces so that the result can be isometrically
immersed in one dimension lower.

A net means that the unfolded polytope does not self-overlap.

Proof idea: identify a bijection between spanning trees of the dual
graph of a d-cube and unfoldings, use the dual graph to show an
unfolding must also be a net.
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A net means that the unfolded polytope does not self-overlap.

Proof idea: identify a bijection between spanning trees of the dual
graph of a d-cube and unfoldings, use the dual graph to show an
unfolding must also be a net.
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Cube Unfolding

Ridge Unfoldings of Cubes (DeSplinter, Devadoss, Readyhough,
2020)

Every ridge unfolding of a finite cube will produce a net.

This result implies we can always remove a connected collection of
codimension-two faces to leave stratified spaces with fewer than d
parameters.
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Cube Unfolding

Ridge Unfoldings of Cubes (DeSplinter, Devadoss, Readyhough,
2020)

Every ridge unfolding of a finite cube will produce a net.

This result implies we can always remove a connected collection of
codimension-two faces to leave a stratified (d − 1)-parameter space.
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K -Theory of Multi-Parameter Persistence Modules

CLAIM:

What is the K -theory of persistence modules over a single strata?

Remember, pModA(X ) := Fun(Ent∆(X),A).

Since we have decomposed things until X has a single strata,
Ent∆(X ) is the single object, single morphism category.

This means Fun(Ent∆(X),A) ∼= A, so that K(pModA(X )) ∼= K(A).

The K -theory depends on the target category A.
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Vect-Valued Persistence Modules

Let’s look at the specific case when A is VectF.

K -Theory of Multi-Parameter Zig-Zag Grid Modules (Grady, S.)

Let X be a cubical manifold embedded as a substratified space of
(Rd ; I ), with finite I . There is an equivalence of spectra

K(pModVectF(X )) ≃
∨

x0∈X0

K(F) ∨
∨

x1∈X1

K(F) ∨ . . . ∨
∨

xd∈Xd

K(F)

where Xi is the set of i-strata of X .

For instance, K0(F) ∼= Z, so K0(pModVectF(X )) is a direct sum of copies of
Z, one for each strata.
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Next Directions

Generalise K -theory results to persistence modules over arbitrary
posets.

Understand K1 through natural transformations between persistence
modules.
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Questions?

a.k.schenfisch@tue.nl
One-parameter: https://arxiv.org/abs/2110.04591
Multi-parameter: https://arxiv.org/abs/2306.06540
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