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Overview

Recap of the Categorical Probability Programme

Some new directions

1 Convex Analysis and Probability

2 Combining Nondeterminism and Probability

3 What are Random Variables?
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Categorical Probability

Idea

Axiomatize categories of stochastic computations directly.

1 Copy-Delete categories (Cho-Jacobs)
unnormalized computation (failure, nondetermination, conditioning etc.)

2 Markov categories (Fritz)
normalized stochastic computation (sampling only)

3 high-level and graphical reasoning (no measure theory!)

4 rigorous, mechanizable and general results

Applications

1 semantics of probabilistic programming

2 causal inference (free CD categories)

3 transfering probabilistic ideas to new domains
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Definitions

CD category

A CD category is a symmetric monoidal category (C,⊗, I ) with comonoid structures

deletecopy

Markov category

A Markov category is a CD category where deletion is natural.

1 Axiomatizes that probability measures are normalized (integrate to 1).

Dario Stein

Categorical Probability



Concepts in Synthetic Probability

Elegant abstract definitions for probabilistic notions

f

f f

=

ψ

f

ψ

g

φ φ

φ|X

= =

f deterministic f = g ψ-almost surely conditional distribution

YX

Formalized: Absolute continuity, Supports, Kolmogorov extension, Kolmogorov’s 0/1
law, De Finetti’s theorem, Aldous-Hoover
In Progress: Conditional Expectation, Law of Large Numbers, Martingale convergence
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Probabilistic Models

On a gradient (very simple – very comprehensive)

1 FinStoch: p : X → Y is a stochastic matrix p ∈ [0, 1]X×Y , i.e.

∀x ,
∑
y

p(y |x) = 1

2 Gauss: affine-linear maps with Gaussian noise

f (x) = Ax +N (µ,Σ)

Composition f (N (µ′,Σ′)) = N (Aµ′ + µ,AΣ′AT +Σ)

3 measurable kernels
standard Borel spaces
compact Hausdorff spaces (continuous kernels)
measurable spaces
quasi-Borel spaces
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More exotic models

A source of models

For a strong monad T on a cartesian category C, Kl(T ) is

1 copy-delete if T is commutative (Kock)

2 Markov if T is commutative and affine (T (1) ∼= 1)

More examples

1 partial functions, (−) + 1 : Set→ Set

2 nondeterminism, P+ : Set→ Set

3 negative probabilities, D± : Set→ Set

4 fresh name generation, N : Nom→ Nom

We will discuss: Convex analysis, linear relations
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Part I - Gaussians and Convexity

Convex analysis is a rich field of mathematics. But convex functions don’t compose.

Definition [Rockafellar’70]

A bifunction F : Rm → Rn is a weighted relation

F : Rm × Rn → R

where R = ([−∞; +∞],∧,+) is the quantale of extended reals. A bifunction is
convex if F is a jointly convex function. Convex bifunctions compose via infimization

(F ;G)(x , z) = inf
y
{F (x , y) + G(y , z)}

We write F : Rm ⇀ Rn for convex and Rm ⇁ Rn for concave bifunctions (compose via
supremization).

Convex functions f : Rm → R are states R0 ⇀ Rm. Bifunctions are self-dual
(hypergraph category).
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Part I - Gaussians and Convexity

The indicator bifunction of A ∈ Rn×m is FA : Rm ⇀ Rn

FA(x , y) = {|y = Ax |} =
{
0, y = Ax

+∞, y ̸= Ax

Theorem

Taking indicator bifunctions is a functor of copy-delete categories

F : Vect→ CxBiFn

Other subcategories of CxBiFn

1 linear and affine relations

2 convex relations

3 convex optimization problems
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Duality

Convex analysis has a rich duality given by the Legendre-Fenchel transform.

Definition

The adjoint of a convex bifunction F : Rm ⇀ Rn is the concave bifunction
F∗ : Rn ⇁ Rm defined by

F∗(y∗, x∗) = inf
x,y
{F (x , y) + ⟨x∗, x⟩ − ⟨y∗, y⟩}

Soft Theorem

Under regularity assumptions, the adjoint behaves like an idempotent functor

(−)∗ : CxBiFn→ CvBiFnop

i.e. (F ;G)∗ = G∗;F∗, F∗∗ = F .
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Duality

Theorem

Adjoints of bifunctions generalize the matrix transpose

Vectop Vect

CvBiFnop CxBiFn

F−F

(−)T

(−)∗

1 the same story works for linear relations (graphical linear algebra)

2 How does probability fit into the picture?
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Part I - Gaussians and Convexity

The logpdf of a Gaussian N (µ, σ2) is a concave quadratic function

h(x) = log f (x) = −
1

2σ2
(x − µ)2
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Part I - Gaussians and Convexity

Question

Instead of computing integrals of densities, can we compute suprema of logdensities?

log

∫
f1(x)f2(y − x)dx → sup

x
{log f1(x) + log f2(y − x)}

This is the “tropical limit” (aka Laplace approximation)

Yes (but only for Gaussians!)

Special Theorem

Logpdf is a functor of copy-delete categories Gauss→ CvBiFnop.
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Part I - Gaussians and Duality

Another special fact: The convex conjugate of a Gaussian logpdf is its cumulant
generating function (cgf)

cX (t) = logE[exp(tX )]

e.g. for N (µ, σ2)

h(x) = −
1

2σ2
(x − µ)2 ⇔ h∗(t) =

1

2
σ2t2 + µt

Gaussians and Duality

We have a commuting diagram of copy-delete functors

Gauss

CvBiFnop CxBiFn

cgflogpdf

(−)∗
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Part II - Gaussians and Nondeterminism

Both Gaussians and linear relations embed in bifunctions. Combine the two?

Definition

An extended Gaussian distribution on Rn is a pair (D, ψ) of a subspace D ⊆ Rn and a
Gaussian distribution on the quotient R/D.

1 D is a nondeterministic fibre along which we have no information

2 we can of this as a distribution on (Rn, E) with E = Borel(Rn/D).

3 the coarse σ-algebra captures lack of information (Willems: ‘open stochastic
system’)
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Part II - Gaussians and Nondeterminism
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Part II - Gaussians and Nondeterminism

In Willems’ approach, σ-algebras are part of the objects! We want to make
nondeterminsm part of the morphisms:

Definition

An extended Gaussian morphism is a cospan of linear maps

X
f−→ P

p←− Y

whose right leg is epi, together with a Gaussian distribution on P. Compose by
pushout

W

P Q

X Y Z

f p g q

⌟
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Part II - Gaussians and Nondeterminism

Example

The ‘uniform distribution’ over R is represented by the cospan 0 −→ 0
!←− R.

Notice the duality with partial maps

1 a partial map is a span X
m←− A

f−→ Y with m monic

2 a copartial map is a cospan X
f−→ P

p←− Y with p epic

Dario Stein

Categorical Probability



Part II - Generators and Relations

Proof technique: presentations by generators and relations

1 for linear maps and linear relations, this is Graphical Linear Algebra

2 the same generators give two hypergraph structures on CxBiFn

copy discard compunit

coadd cozero addzero
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Part II - Generators and Relations

Extend affine linear algebra with a single new generator such that

=

...
R ...

= ...
...

(D)

(RI)

for all orthogonal matrices R.

Surprising Theorem

This presentation of Gauss is complete.

Next step: represent the category of partial convex quadratic functions by suitable
relations.
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Part III - Random Variables and Local State

We have talked about distributions/channels, but what are random variables?

1 can be meaningfully compared for equality X = Y (almost surely)

2 are cartesian, i.e. can be copied, discarded, a random variable of type X × Y is a
pair of random variables (X ,Y )

Traditional answer: Measurable function X : (Ω, p)→ V where (Ω, p) is a sample
space.

1 where does the sample space come from?

2 how to make dependence on Ω explicit?

3 in practice, the sample space gets modified or extended on the fly?
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Part III - Random Variables, a Computer Science view

Alex Simpson’s answer: random variables are like pointers to a heap

we consider sheaves over sample spaces

have a sheaf of random variables RV(X ),

RV(X )(Ω, p) = {f : (Ω, p)→ X measurable }/a.s.

functorial action = extension of sample spaces

Desirable results:

1 Boolean topos where everything is equivariant under change of sample spaces

2 RV(X × Y ) ∼= RV(X )× RV(Y )

3 Conditional expectation E : RV(R)× RV(X )→ RV(R)
4 Allocation of random variables via a local state monad

(MF )(Ω) =

∫ Ω′

hom(Ω′,Ω)× F (Ω′)
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Part III - Random Variables, a Computer Science view

Question

How much of Alex’ story works in a general Markov category C? What is required for
random variables to form a sheaf? If C = Kl(T ), how are M and T related?

A sample space in C is a pair (Ω, p) of an object Ω and a distribution p : I → Ω. A
morphism (X , p)→ (Y , q) is an equivalence class of morphisms [f ]p : X → Y which
are p-almost surely deterministic and measure-preserving (f ◦ p = q).

We always have a separated presheaf

RV (X ) : SamSp(C)op → Set,RV(X )(Ω, p) = {[f ]p : Ω→ X p-a.s. det.}

When is this a sheaf?
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Part III - Gaussian Random Variables and Nominal Sets

Testing this framework for simple Markov categories already gives very interesting
results.

Example

Let C = Gauss. Then sample spaces are of the form N (µ,Σ) with µ ∈ Rn,Σ ∈ Rn×n

positive semidefinite. Morphisms are measure-preserving affine-linear maps.

1 We have N (µ,Σ) ∼= N (0, Ik ) where k = rank(Σ).

2 it remains to classify the measure-preserving maps N (0, Ik )→ N (0, In). Those
are given by the co-isometries A ∈ Rn×k with AAT = In.

3 Gaussian random variables can be treated in the topos of sheaves Iso→ Set

The analogy with the Schanuel topos (nominal sets) are striking! Those consists of
sheaves Inj→ Set, motivated by similar symmetry considerations.
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Take home message

TL;DR

1 convex bifunctions can be seen as an exotic form of probability

2 for Gaussians, the probabilistic and convex perspective are equivalent, giving a
functor of CD categories

Gauss→ CxBiFn

3 co-partiality helps combining probability and nondeterminism

4 The universal property of Gaussians is their rotation invariance

5 Random variables work much like local state

6 useful in implementations https://github.com/damast93/GaussianInfer

Thank you!
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