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Classical lambda calculus in modern dress

• Paper by Martin Hyland.

• About models for the λ-calculus.

• Three ‘big’ theorems.

• My job: ‘annotate’.

2 / 22



Intro
Talking about the λ-calculus

Models
Semantics

The main theorems
Scott’s representation theorem
The fundamental theorem of the
λ-calculus
The category of retracts

My contribution
Annotating the paper
Mechanization

Conclusion

Λ− algebras

λ− theories
Endomorphism

theories

Relatively Cartesian
Closed Categories

3 / 22



Intro
Talking about the λ-calculus

Models
Semantics

The main theorems
Scott’s representation theorem
The fundamental theorem of the
λ-calculus
The category of retracts

My contribution
Annotating the paper
Mechanization

Conclusion

Λ− algebras

λ− theories
Endomorphism

theories

Relatively Cartesian
Closed Categories

4 / 22



The untyped λ-calculus

Describes a collection consisting of (only) functions.

Has terms, consisting of variables, application and abstraction:

x1

x1(x2x1)

λx1, x1

λx3x2x1, x1(x2x3).

Can have β- and η-equality:

(λxn, f )g = f [xn := g ] λxn, (fxn) = f .

The (pure) λ-calculus: Described exactly by the above.
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Algebraic theories: objects with variables and substitution

Example

λ-calculus: Λn = {(λx1, x1), x5, (λx3, x7)x42}.

Example

Polynomial ring: Z[x1, ..., xn] = {1, x3, 2048 + 7x371 − x6x
42
13x

1729
17 , . . . }.

Definition
An algebraic theory T is a sequence of sets Tn with variables xi ,n ∈ Tn (for 0 ≤ i < n)
and a substitution operation • : Tm × Tm

n → Tn.
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λ-theory: structure with app and abs

Definition
A λ-theory L is an algebraic theory, together with abstraction functions λ : Ln+1 → Ln
and application functions ρ : Ln → Ln+1 (both compatible with the substitution).

The pure λ-calculus Λ is the initial λ-theory.

β- and η-equality:
ρn ◦ λn = IdLn+1 λn ◦ ρn = IdLn .
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Algebras: Interpretations (or denotations)

We want to interpret terms with free variables as functions from a context to a set

Example

In T (n) = Z[x1, . . . , xn], we can take a set A = Q and get

2x1 + 3x21x2 : A2 → A, (a1, a2) 7→ 2 · a1 + 3 · a21 · a2.

Definition
For an algebraic theory T , a T-algebra A is a set A, together with interpretation
functions Tn × An → A for all n (respecting the variables and substitution).
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Scott’s representation theorem (1980)

For every λ-theory L, we can find a category C and an object X : C0, such that L is
isomorphic to the endomorphism theory of X : the λ-theory E (X ) given by
E (X )n = X n → X.

The variables of E (X )n are the projections πi : X n → X . Also, substituting
g1, . . . , gm : X n → X into f : Xm → X composes f with 〈g1, . . . , gm〉 : X n → Xm.

We obtain λ : E (X )n+1 → E (X )n as

λ : E (X )n+1 = (X n+1 → X ) ' (X n → XX )
abs ◦ −−−−−−→ (X n → X ) = E (X )n.

for some morphism abs : XX → X . In the same way, we get ρ : E (X )n → E (X )n+1

from a morphism app : X → XX .
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For every λ-theory L, we can find a category C and an object X : C0, such that L is
isomorphic to the endomorphism theory of X : the λ-theory E (X ) given by
E (X )n = X n → X.

C is the category of sequences of sets (Pi )i with a composition Pm × Lmn → Pn and X
is the sequence (Li )i .

With Hyland’s definitions and some lemmas, the representation theorem arises before
you know it (on paper).
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“The fundamental theorem of the λ-Calculus”

There is a functor from λ-theories to Λ-algebras, sending L to L0: its set of constants.

There is also a functor from Λ-algebras to λ-theories. This functor again uses the
endomorphism theory E (X ) for some object X to construct the λ-theory.

Hyland shows that these functors constitute an adjoint equivalence.
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The category of retracts

Given a λ-theory L, we can view elements f : L1 as one-argument functions, and we
can compose them like f ◦ g := f • g .

Now we construct a category R

R0 = {a : L1 | a ◦ a = a}, a→ b = {f : L1 | b ◦ f ◦ a = f }.

This category is cartesian closed: it has products, and ‘exponentials’. So its morphisms
constitute a simply typed λ-calculus: we can do type theory with the morphisms.
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Relatively cartesian closed
This category is cartesian closed: it has products, and ‘exponentials’. So its morphisms
constitute a simply typed λ-calculus: we can do type theory with the morphisms.

If we want to do dependent type theory, we need dependent products and sums.

R/A R/B

A B

f ∗

∑
f

∏
f

f

Locally cartesian closed : all pullback functors have both adjoints.

In R, not all pullback functors have both adjoints, but some do: relatively cartesian
closed.

I am still working on understanding the proof.
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Annotating the paper

An algebraic theory T is first a functor T : F→ Sets: so we have sets T (n) of n-ary
multimaps with variable renamings. In addition, T is equipped with projections
pr1, . . . , prn : T (n) including as special case the identity id ∈ T (1). Finally there are
compositions T (n)× T (m)n → T (m) which are associative, unital, compatible
with projections and natural in n and m. A map F : S → T of algebraic theories is
a natural transformation with components Fn : S(n)→ T (n) preserving projections
and composition.

• Learn the background.

• Decode the definitions and theorems.

• Find examples.

• Formalize (on paper).

• Mechanize.
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Mechanization

• Displayed categories:

• Univalence;
• Limits (twice);

• Higher inductive types;

• X n+1 = X × X n;

• Xn+1 = X1+n;
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Conclusion

Algebraic theories, λ-theories and their algebras (and ‘presheaves’) seem to be a
promising way to work with models for the λ-calculus.

3 ‘big’ theorems:

• Every model of the λ-calculus arises as the endomorphism theory of some category.

• There is an equivalence between models of the λ-calculus, and interpretations of
the λ-calculus as functions on a set.

• From a model for the untyped λ-calculus, we can create a category in which we
can do some form of dependent type theory.

I am slowly processing the paper.

Mechanization is hard.
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Do you have questions?

Because I have one: I am still a bit unsure about the exact ‘meaning’ of relative
cartesian closedness. Can someone explain that better to me?
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