Semantics for the λ-calculus

Arnoud van der Leer
Delft University of Technology arnoudvanderleer@gmail.com

2023-11-02

Classical lambda calculus in modern dress

- Paper by Martin Hyland.
- About models for the λ-calculus.
- Three 'big' theorems.
- My job: 'annotate'.

Talking about the λ-calculus
Models
Semantics
The main theorems
Scott's representation theorem
The fundamental theorem of the
λ-calculus
The category of retracts
My contribution
Annotating the paper
Mechanization
Conclusion
Λ - algebras
λ-theories $\longleftrightarrow \quad$ Endomorphism theories

Relatively Cartesian Closed Categories

Intro
Talking about the λ-calculus
Models
Semantics
The main theorems
Scott's representation theorem
The fundamental theorem of the
λ-calculus
The category of retracts
My contribution
Annotating the paper
Mechanization
Conclusion

The untyped λ-calculus

Describes a collection consisting of (only) functions.

The untyped λ-calculus

Describes a collection consisting of (only) functions.
Has terms, consisting of variables, application and abstraction:

$$
\begin{gathered}
x_{1} \\
x_{1}\left(x_{2} x_{1}\right) \\
\lambda x_{1}, x_{1} \\
\lambda x_{3} x_{2} x_{1}, x_{1}\left(x_{2} x_{3}\right) .
\end{gathered}
$$

Can have β - and η-equality:

$$
\left(\lambda x_{n}, f\right) g=f\left[x_{n}:=g\right] \quad \lambda x_{n},\left(f x_{n}\right)=f
$$

The untyped λ-calculus

Describes a collection consisting of (only) functions.
Has terms, consisting of variables, application and abstraction:

$$
\begin{gathered}
x_{1} \\
x_{1}\left(x_{2} x_{1}\right) \\
\lambda x_{1}, x_{1} \\
\lambda x_{3} x_{2} x_{1}, x_{1}\left(x_{2} x_{3}\right) .
\end{gathered}
$$

Can have β - and η-equality:

$$
\left(\lambda x_{n}, f\right) g=f\left[x_{n}:=g\right] \quad \lambda x_{n},\left(f x_{n}\right)=f
$$

The (pure) λ-calculus: Described exactly by the above.

Algebraic theories: objects with variables and substitution

Example
λ-calculus: $\Lambda_{n}=\left\{\left(\lambda x_{1}, x_{1}\right), x_{5},\left(\lambda x_{3}, x_{7}\right) x_{42}\right\}$.

Algebraic theories: objects with variables and substitution

Example
λ-calculus: $\Lambda_{n}=\left\{\left(\lambda x_{1}, x_{1}\right), x_{5},\left(\lambda x_{3}, x_{7}\right) x_{42}\right\}$.

Example
Polynomial ring: $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]=\left\{1, x_{3}, 2048+7 x_{1}^{37}-x_{6} x_{13}^{42} x_{17}^{1729}, \ldots\right\}$.

Algebraic theories: objects with variables and substitution

Example

λ-calculus: $\Lambda_{n}=\left\{\left(\lambda x_{1}, x_{1}\right), x_{5},\left(\lambda x_{3}, x_{7}\right) x_{42}\right\}$.

Example

Polynomial ring: $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]=\left\{1, x_{3}, 2048+7 x_{1}^{37}-x_{6} x_{13}^{42} x_{17}^{1729}, \ldots\right\}$.

Definition

An algebraic theory T is a sequence of sets T_{n} with variables $x_{i, n} \in T_{n}($ for $0 \leq i<n)$ and a substitution operation $\bullet: T_{m} \times T_{n}^{m} \rightarrow T_{n}$.

λ-theory: structure with app and abs

Definition

A λ-theory L is an algebraic theory, together with abstraction functions $\lambda: L_{n+1} \rightarrow L_{n}$ and application functions $\rho: L_{n} \rightarrow L_{n+1}$ (both compatible with the substitution).

λ-theory: structure with app and abs

Definition

A λ-theory L is an algebraic theory, together with abstraction functions $\lambda: L_{n+1} \rightarrow L_{n}$ and application functions $\rho: L_{n} \rightarrow L_{n+1}$ (both compatible with the substitution).

The pure λ-calculus Λ is the initial λ-theory.

λ-theory: structure with app and abs

Definition

A λ-theory L is an algebraic theory, together with abstraction functions $\lambda: L_{n+1} \rightarrow L_{n}$ and application functions $\rho: L_{n} \rightarrow L_{n+1}$ (both compatible with the substitution).

The pure λ-calculus Λ is the initial λ-theory.
β - and η-equality:

$$
\rho_{n} \circ \lambda_{n}=\operatorname{Id}_{L_{n+1}} \quad \lambda_{n} \circ \rho_{n}=\operatorname{Id}_{L_{n}} .
$$

Algebras: Interpretations (or denotations)

We want to interpret terms with free variables as functions from a context to a set Example
In $T(n)=\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$, we can take a set $A=\mathbb{Q}$ and get

$$
2 x_{1}+3 x_{1}^{2} x_{2}: A^{2} \rightarrow A, \quad\left(a_{1}, a_{2}\right) \mapsto 2 \cdot a_{1}+3 \cdot a_{1}^{2} \cdot a_{2}
$$

Algebras: Interpretations (or denotations)

We want to interpret terms with free variables as functions from a context to a set

Example

In $T(n)=\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$, we can take a set $A=\mathbb{Q}$ and get

$$
2 x_{1}+3 x_{1}^{2} x_{2}: A^{2} \rightarrow A, \quad\left(a_{1}, a_{2}\right) \mapsto 2 \cdot a_{1}+3 \cdot a_{1}^{2} \cdot a_{2}
$$

Definition

For an algebraic theory T, a T-algebra A is a set A, together with interpretation functions $T_{n} \times A^{n} \rightarrow A$ for all n (respecting the variables and substitution).

Intro
Talking about the λ-calculus

Models
Semantics
The main theorems
Scott's representation theorem
The fundamental theorem of the
λ-calculus
The category of retracts
My contribution
Annotating the paper
Mechanization
Conclusion
Λ - algebras

Endomorphism theories

Relatively Cartesian Closed Categories

Scott's representation theorem (1980)

For every λ-theory L, we can find a category C and an object $X: C_{0}$, such that L is isomorphic to the endomorphism theory of X : the λ-theory $E(X)$ given by $E(X)_{n}=X^{n} \rightarrow X$.

Scott's representation theorem (1980)

For every λ-theory L, we can find a category C and an object X : C_{0}, such that L is isomorphic to the endomorphism theory of X : the λ-theory $E(X)$ given by $E(X)_{n}=X^{n} \rightarrow X$.

The variables of $E(X)_{n}$ are the projections $\pi_{i}: X^{n} \rightarrow X$. Also, substituting $g_{1}, \ldots, g_{m}: X^{n} \rightarrow X$ into $f: X^{m} \rightarrow X$ composes f with $\left\langle g_{1}, \ldots, g_{m}\right\rangle: X^{n} \rightarrow X^{m}$.

Scott's representation theorem (1980)

For every λ-theory L, we can find a category C and an object $X: C_{0}$, such that L is isomorphic to the endomorphism theory of X : the λ-theory $E(X)$ given by $E(X)_{n}=X^{n} \rightarrow X$.
The variables of $E(X)_{n}$ are the projections $\pi_{i}: X^{n} \rightarrow X$. Also, substituting $g_{1}, \ldots, g_{m}: X^{n} \rightarrow X$ into $f: X^{m} \rightarrow X$ composes f with $\left\langle g_{1}, \ldots, g_{m}\right\rangle: X^{n} \rightarrow X^{m}$.

We obtain $\lambda: E(X)_{n+1} \rightarrow E(X)_{n}$ as

$$
\lambda: E(X)_{n+1}=\left(X^{n+1} \rightarrow X\right) \simeq\left(X^{n} \rightarrow X^{X}\right) \xrightarrow{\overline{a b s} \circ-}\left(X^{n} \rightarrow X\right)=E(X)_{n}
$$

for some morphism $\overline{a b s}: X^{X} \rightarrow X$. In the same way, we get $\rho: E(X)_{n} \rightarrow E(X)_{n+1}$ from a morphism $\overline{a p p}: X \rightarrow X^{X}$.

Scott's representation theorem (1980)

For every λ-theory L, we can find a category C and an object $X: C_{0}$, such that L is isomorphic to the endomorphism theory of X : the λ-theory $E(X)$ given by $E(X)_{n}=X^{n} \rightarrow X$.
C is the category of sequences of sets $\left(P_{i}\right)_{i}$ with a composition $P_{m} \times L_{n}^{m} \rightarrow P_{n}$ and X is the sequence $\left(L_{i}\right)_{i}$.

Scott's representation theorem (1980)

For every λ-theory L, we can find a category C and an object $X: C_{0}$, such that L is isomorphic to the endomorphism theory of X : the λ-theory $E(X)$ given by $E(X)_{n}=X^{n} \rightarrow X$.
C is the category of sequences of sets $\left(P_{i}\right)_{i}$ with a composition $P_{m} \times L_{n}^{m} \rightarrow P_{n}$ and X is the sequence $\left(L_{i}\right)_{i}$.

With Hyland's definitions and some lemmas, the representation theorem arises before you know it (on paper).

Intro
Talking about the λ-calculus

Models
Semantics
The main theorems
Scott's representation theorem
The fundamental theorem of the λ-calculus
The category of retracts
My contribution
Annotating the paper
Mechanization
Conclusion
Λ - algebras

"The fundamental theorem of the λ-Calculus"

There is a functor from λ-theories to Λ-algebras, sending L to L_{0} : its set of constants.

"The fundamental theorem of the λ-Calculus"

There is a functor from λ-theories to Λ-algebras, sending L to L_{0} : its set of constants.
There is also a functor from Λ-algebras to λ-theories. This functor again uses the endomorphism theory $E(X)$ for some object X to construct the λ-theory.

"The fundamental theorem of the λ-Calculus"

There is a functor from λ-theories to Λ-algebras, sending L to L_{0} : its set of constants.
There is also a functor from Λ-algebras to λ-theories. This functor again uses the endomorphism theory $E(X)$ for some object X to construct the λ-theory.

Hyland shows that these functors constitute an adjoint equivalence.

Intro
Talking about the λ-calculus

Models
Semantics
The main theorems
Scott's representation theorem
The fundamental theorem of the
λ-calculus
The category of retracts
My contribution
Annotating the paper
Mechanization
Conclusion
Λ - algebras

λ - theories

Endomorphism theories

Relatively Cartesian Closed Categories

The category of retracts

Given a λ-theory L, we can view elements $f: L_{1}$ as one-argument functions, and we can compose them like $f \circ g:=f \bullet g$.

Now we construct a category R

$$
R_{0}=\left\{a: L_{1} \mid a \circ a=a\right\}, \quad a \rightarrow b=\left\{f: L_{1} \mid b \circ f \circ a=f\right\} .
$$

The category of retracts

Given a λ-theory L, we can view elements $f: L_{1}$ as one-argument functions, and we can compose them like $f \circ g:=f \bullet g$.

Now we construct a category R

$$
R_{0}=\left\{a: L_{1} \mid a \circ a=a\right\}, \quad a \rightarrow b=\left\{f: L_{1} \mid b \circ f \circ a=f\right\} .
$$

This category is cartesian closed: it has products, and 'exponentials'. So its morphisms constitute a simply typed λ-calculus: we can do type theory with the morphisms.

Relatively cartesian closed

This category is cartesian closed: it has products, and 'exponentials'. So its morphisms constitute a simply typed λ-calculus: we can do type theory with the morphisms.

Relatively cartesian closed

This category is cartesian closed: it has products, and 'exponentials'. So its morphisms constitute a simply typed λ-calculus: we can do type theory with the morphisms.

If we want to do dependent type theory, we need dependent products and sums.

Locally cartesian closed: all pullback functors have both adjoints.

Relatively cartesian closed

This category is cartesian closed: it has products, and 'exponentials'. So its morphisms constitute a simply typed λ-calculus: we can do type theory with the morphisms.

If we want to do dependent type theory, we need dependent products and sums.

Locally cartesian closed: all pullback functors have both adjoints.
In R, not all pullback functors have both adjoints, but some do: relatively cartesian closed.

Relatively cartesian closed

This category is cartesian closed: it has products, and 'exponentials'. So its morphisms constitute a simply typed λ-calculus: we can do type theory with the morphisms.

If we want to do dependent type theory, we need dependent products and sums.

Locally cartesian closed: all pullback functors have both adjoints.
In R, not all pullback functors have both adjoints, but some do: relatively cartesian closed.

I am still working on understanding the proof.

Talking about the λ-calculus

Models
Semantics
The main theorems
Scott's representation theorem
The fundamental theorem of the
λ-calculus
The category of retracts
My contribution
Annotating the paper
Mechanization
Λ - algebras

λ - theories

Endomorphism theories

Relatively Cartesian Closed Categories

Annotating the paper

An algebraic theory T is first a functor $T: \mathbf{F} \rightarrow$ Sets: so we have sets $T(n)$ of n-ary multimaps with variable renamings. In addition, T is equipped with projections $p r_{1}, \ldots, p r_{n}: T(n)$ including as special case the identity id $\in T(1)$. Finally there are compositions $T(n) \times T(m)^{n} \rightarrow T(m)$ which are associative, unital, compatible with projections and natural in n and m. A map $F: S \rightarrow T$ of algebraic theories is a natural transformation with components $F_{n}: S(n) \rightarrow T(n)$ preserving projections and composition.

Annotating the paper

An algebraic theory T is first a functor $T: \mathbf{F} \rightarrow$ Sets: so we have sets $T(n)$ of n-ary multimaps with variable renamings. In addition, T is equipped with projections $p r_{1}, \ldots, p r_{n}: T(n)$ including as special case the identity id $\in T(1)$. Finally there are compositions $T(n) \times T(m)^{n} \rightarrow T(m)$ which are associative, unital, compatible with projections and natural in n and m. A map $F: S \rightarrow T$ of algebraic theories is a natural transformation with components $F_{n}: S(n) \rightarrow T(n)$ preserving projections and composition.

- Learn the background.
- Decode the definitions and theorems.
- Find examples.
- Formalize (on paper).
- Mechanize.

Mechanization

- Displayed categories:
- Univalence;
- Limits (twice);
- Higher inductive types;
- $X^{n+1}=X \times X^{n}$;
- $X_{n+1}=X_{1+n}$;

Talking about the λ-calculus

Models
Semantics
The main theorems
Scott's representation theorem
The fundamental theorem of the
λ-calculus
The category of retracts
My contribution
Annotating the paper
Mechanization
Conclusion
Λ - algebras

λ - theories

Endomorphism theories

Relatively Cartesian Closed Categories

Conclusion

Algebraic theories, λ-theories and their algebras (and 'presheaves') seem to be a promising way to work with models for the λ-calculus.

Conclusion

Algebraic theories, λ-theories and their algebras (and 'presheaves') seem to be a promising way to work with models for the λ-calculus.

3 'big' theorems:

- Every model of the λ-calculus arises as the endomorphism theory of some category.
- There is an equivalence between models of the λ-calculus, and interpretations of the λ-calculus as functions on a set.
- From a model for the untyped λ-calculus, we can create a category in which we can do some form of dependent type theory.

Conclusion

Algebraic theories, λ-theories and their algebras (and 'presheaves') seem to be a promising way to work with models for the λ-calculus.

3 'big' theorems:

- Every model of the λ-calculus arises as the endomorphism theory of some category.
- There is an equivalence between models of the λ-calculus, and interpretations of the λ-calculus as functions on a set.
- From a model for the untyped λ-calculus, we can create a category in which we can do some form of dependent type theory.

I am slowly processing the paper.

Conclusion

Algebraic theories, λ-theories and their algebras (and 'presheaves') seem to be a promising way to work with models for the λ-calculus.

3 'big' theorems:

- Every model of the λ-calculus arises as the endomorphism theory of some category.
- There is an equivalence between models of the λ-calculus, and interpretations of the λ-calculus as functions on a set.
- From a model for the untyped λ-calculus, we can create a category in which we can do some form of dependent type theory.

I am slowly processing the paper.
Mechanization is hard.

Do you have questions?

Do you have questions?

Because I have one: I am still a bit unsure about the exact 'meaning' of relative cartesian closedness. Can someone explain that better to me?

