A 2-categorical proof of Frobenius for fibrations defined from a

 generic pointDutchCATS
UvA, Amsterdam

Sina Hazratpour

January 2023

This is based on a joint work with Emily Riehl at Johns Hopkins.

Preprint: arXiv:2110.14576

In the context of models of HoTT, the Frobenius theorem says that the pushforward along fibrations preserve fibrations.

History

In the context of models of HoTT, the Frobenius theorem says that the pushforward along fibrations preserve fibrations.

The Frobenius theorem is used for the interpretation of Π types.

History

In the context of models of HoTT, the Frobenius theorem says that the pushforward along fibrations preserve fibrations.

The Frobenius theorem is used for the interpretation of Π types.
A non-constructive proof, using minimal fibrations, is given in the simplicial model of HoTT by Voevodsky.

History

In the context of models of HoTT, the Frobenius theorem says that the pushforward along fibrations preserve fibrations.

The Frobenius theorem is used for the interpretation of Π types.
A non-constructive proof, using minimal fibrations, is given in the simplicial model of HoTT by Voevodsky.

Coquand gave a slick type theoretic proof in Cubical Type Theory.

History

In the context of models of HoTT, the Frobenius theorem says that the pushforward along fibrations preserve fibrations.

The Frobenius theorem is used for the interpretation of Π types.
A non-constructive proof, using minimal fibrations, is given in the simplicial model of HoTT by Voevodsky.

Coquand gave a slick type theoretic proof in Cubical Type Theory.
Coquand's proof was analyzed using category theory by Steve Awodey and Christian Sattler.

Our Proof: Setup

- A locally cartesian closed category \mathscr{E}. In particular, every morphism $p: A \rightarrow X$ gives rise to an adjoint triple

- An object 0 in \mathscr{E}.
- A class TFib of trivial fibrations, which
admit sections,
are stable under pushforwards (along any map),
are stable under retracts.

Fibrations

We say a map $p: A \rightarrow X$ is a fibration precisely when the gap map $\delta \Rightarrow p$ is a trivial fibration.

Frobenius Theorem

Theorem (Coquand)
Fibrations are closed under pushforward along other fibrations.

Frobenius Theorem

```
Theorem (Coquand)
Fibrations are closed under pushforward along other fibrations.
```

In the semantics of HoTT, we interpret types by fibrations. The Frobenius theorem allows for the interpretation of Π-types as pushforward of fibrations along fibrations.

Frobenius Theorem

Theorem (Coquand)

Fibrations are closed under pushforward along other fibrations.

In the semantics of HoTT, we interpret types by fibrations. The Frobenius theorem allows for the interpretation of Π-types as pushforward of fibrations along fibrations.

$$
\frac{X \vdash A \text { Type } \quad X . A \vdash B \text { Type }}{X \vdash \Pi_{A} B \text { Type }}
$$

Our Proof Strategy

Our goal is to prove $\delta \Rightarrow p_{*} q$ is a trivial fibration.

Our Proof Strategy

Our goal is to prove $\delta \Rightarrow p_{*} q$ is a trivial fibration.
To do this, we show $\delta \Rightarrow p_{*} q$ is a retract of a pushforward of $\delta \Rightarrow \boldsymbol{q}$, hence a trivial fibration.

Our Proof Strategy

Our goal is to prove $\delta \Rightarrow p_{*} q$ is a trivial fibration.
To do this, we show $\delta \Rightarrow p_{*} q$ is a retract of a pushforward of $\delta \Rightarrow q$, hence a trivial fibration.

$$
\begin{aligned}
& \left(\Pi_{A} B\right)^{\mathbb{\square}} \times \mathbb{\square} \xrightarrow{\kappa} \Pi_{A^{0} \times \rrbracket} B^{\rrbracket} \times \mathbb{\square} \xrightarrow{\rho}\left(\Pi_{A} B\right)^{\mathbb{\square}} \times \mathbb{\square} \\
& \delta \Rightarrow p_{*} q \downarrow \downarrow\left(p^{0} \times 0\right)_{*}(\delta \Rightarrow q) \quad \downarrow \delta \Rightarrow p_{*} q \\
& \left(\Pi_{A} B\right)_{\epsilon} \xrightarrow[\kappa_{\epsilon}]{ } \Pi_{A^{0} \times \mathbb{1}}\left(B_{\epsilon}\right) \xrightarrow[\rho_{\epsilon}]{ }\left(\Pi_{A} B\right)_{\epsilon}
\end{aligned}
$$

Our Proof Strategy

Our goal is to prove $\delta \Rightarrow p_{*} q$ is a trivial fibration.
To do this, we show $\delta \Rightarrow p_{*} q$ is a retract of a pushforward of $\delta \Rightarrow q$, hence a trivial fibration.

$$
\begin{aligned}
& \left(\Pi_{A} B\right)^{\mathbb{\square}} \times \mathbb{\square} \xrightarrow{\kappa} \Pi_{A^{0} \times \mathbb{0}} B^{\rrbracket} \times \mathbb{\longrightarrow} \xrightarrow{\rho}\left(\Pi_{A} B\right)^{\mathbb{\square}} \times \mathbb{\square} \\
& \delta \Rightarrow p_{*} q \downarrow \downarrow\left(p^{0} \times \square\right)_{*}(\delta \Rightarrow q) \quad \downarrow \delta \Rightarrow p_{*} q \\
& \left(\Pi_{A} B\right)_{\epsilon} \xrightarrow[\kappa_{\epsilon}]{ } \Pi_{A^{0} \times 0}\left(B_{\epsilon}\right) \xrightarrow[\rho_{\epsilon}]{ }\left(\Pi_{A} B\right)_{\epsilon}
\end{aligned}
$$

To do these we use the calculus of mates from 2-category theory.

Theorem (Kelly-Street)

Consider the pair of double categories Ladj and Radj whose:

- objects are categories,
- horizontal arrows are functors,
- vertical arrows are fully-specified adjunctions pointing in the direction of the left adjoint, and
- squares of Ladj (resp. Radj) are natural transformations between the squares of functors formed by the left (resp. right) adjoints.

Then

$$
\mathbb{L a d j} \cong \mathbb{R a d j}
$$

which acts on squares by taking mates.

unit \& Count As Mates

The Basic 2-cells

From the counit 2-cells

$$
\begin{aligned}
& / 0 \xrightarrow{0!} / 1 \quad / 1 \xrightarrow{0^{*}} / 0 \\
& { }^{0 *} \uparrow \quad \Downarrow \pi \mid \\
& / 1=/ 1
\end{aligned}
$$

The Basic 2-cells

From the counit 2-cells
we obtain the span

$$
X^{\rrbracket} \stackrel{\pi}{\longleftarrow} X^{\rrbracket} \times \rrbracket \xrightarrow{\epsilon} X
$$

natural in X.

The Basic 2-cells

From the counit 2-cells

$$
\begin{aligned}
& / 0 \xrightarrow{\square!} / 1 \quad / 1 \xrightarrow{0^{*}} / 0 \\
& { }^{0} \uparrow \uparrow \quad \Downarrow \pi \quad\left\|\quad 0_{*} \uparrow \quad \Downarrow \nu\right\| \\
& / 1=/ 1 \quad / 0=/ 0
\end{aligned}
$$

we obtain the span

$$
X^{\rrbracket} \stackrel{\pi}{\longleftrightarrow} X^{\rrbracket} \times \mathbb{\square} \xrightarrow{\epsilon} X
$$

natural in X.
Moreover, π is cartesian:

$$
\begin{aligned}
& A^{\mathbb{Q}} \times \mathbb{\square} \xrightarrow{\pi} A^{\rrbracket} \\
& \left.p^{0} \times \downarrow \downarrow \quad\right\lrcorner \quad{ }^{0} \\
& X^{\rrbracket} \times \square \xrightarrow[\pi]{\longrightarrow} X^{\square}
\end{aligned}
$$

Leibniz Exponential from the Basic 2-cells

The component of the whiskered counit

$$
\left.\begin{aligned}
& A^{\mathbb{1}} \\
& / X^{\rrbracket} \xrightarrow{\pi^{*}} / X^{\rrbracket} \times \mathbb{\square} \\
& \pi_{*} \uparrow \Downarrow \nu
\end{aligned} \right\rvert\,
$$

at $p: A \rightarrow X$ is the Leibniz exponential $\delta \Rightarrow p: A^{\rrbracket} \times \rrbracket \rightarrow A_{\epsilon}$.

Constructing κ_{ϵ} via Mates

$$
\begin{aligned}
& A^{0} \times \mathbb{\square} \xrightarrow{\epsilon} A \\
& \rho^{p} \times 1 \downarrow \downarrow{ }^{\rho} \\
& x^{0} \times 0 \rightarrow x
\end{aligned}
$$

Constructing κ_{ϵ} via Mates

$$
\begin{aligned}
& / A^{0} \times 0 \xrightarrow{\epsilon_{1}} / A \\
& \left(p^{0} \times 1\right)!\quad \quad \rho^{p} \\
& \left./ X^{\square} \times \mathbb{\epsilon _ { ! }}\right] / X
\end{aligned}
$$

Constructing κ_{ϵ} via Mates

$$
\begin{gathered}
\mid A^{0} \times \mathbb{0} \times \xrightarrow{\epsilon_{!}} / A \\
\left(p^{0} \times 0\right)^{*} \uparrow \\
/ X^{\natural} \times \mathbb{0} \xrightarrow[\epsilon_{1}]{\Downarrow} / X
\end{gathered}
$$

Constructing κ_{ϵ} via Mates

$$
\begin{aligned}
& / A^{0} \times \mathbb{\square} \leftarrow^{\epsilon^{*}} / A \\
& \left(p^{0} \times 1\right)^{*} \uparrow \cong{ }^{*} \uparrow p^{*} \\
& / X^{\boxtimes} \times \mathbb{\square}{\overleftarrow{\epsilon^{*}}} / X
\end{aligned}
$$

Constructing κ_{ϵ} via Mates

$$
\begin{gathered}
\mid A^{\mathbb{0}} \times \mathbb{0} \stackrel{\epsilon^{*}}{\longleftarrow} / A \\
\left(p^{0} \times 0\right) \downarrow \downarrow \Uparrow \kappa_{\epsilon} \quad \downarrow_{p_{*}} \\
/ X^{\mathbb{0}} \times \mathbb{0} \overleftarrow{\epsilon^{*}} / X
\end{gathered}
$$

Constructing κ_{ϵ} via Mates

$$
\begin{aligned}
& A^{0} \times \mathbb{C} \xrightarrow{\epsilon} A \\
& / A^{0} \times 0 \xrightarrow{\epsilon} / A \\
& / A^{0} \times 1 \stackrel{e^{*}}{\leftarrow} / A
\end{aligned}
$$

Constructing κ_{ϵ} via Mates

$/ A^{0} \times \mathbb{\square} \stackrel{\epsilon^{*}}{\longleftarrow} / A$

$$
X^{0} \times 0 \underset{\epsilon}{\longrightarrow} X \quad \quad \mid X^{\natural} \times 0 \underset{\epsilon}{\longrightarrow} / X \quad \quad X^{0} \times 0 \underset{\epsilon^{*}}{\leftrightarrows} / X
$$

The component of κ_{ϵ} at $q: B \rightarrow A$ defines a map $\kappa_{\epsilon}:\left(\Pi_{A} B\right)_{\epsilon} \rightarrow \Pi_{A^{1} \times{ }^{1}} B_{\epsilon}$ over $X^{0} \times 0$.

Constructing κ_{ϵ} via Mates

So far,

$$
\begin{aligned}
& \left(\Pi_{A} B\right)^{\square} \times \square \quad \Pi_{A^{0} \times \mathbb{1}} B^{\square} \times \square \\
& \delta \Rightarrow p_{*} q \downarrow \downarrow \downarrow\left(p^{0} \times 0\right)_{*}(\delta \Rightarrow q) \\
& \left(\Pi_{A} B\right)_{\epsilon} \xrightarrow[\kappa_{\epsilon}]{ } \Pi_{A^{0} \times 0}\left(B_{\epsilon}\right)
\end{aligned}
$$

Constructing κ_{ϵ} via Mates

So far,

$$
\begin{aligned}
& \left(\Pi_{A} B\right)^{\square} \times \square \xrightarrow{\kappa} \rightarrow \Pi_{A^{0} \times \square} B^{\square} \times \mathbb{\square} \\
& \delta \Rightarrow p_{*} q \downarrow \quad \downarrow\left(p^{0} \times 0\right)_{*}(\delta \Rightarrow q) \\
& \left(\Pi_{A} B\right)_{\epsilon} \xrightarrow[\kappa_{\epsilon}]{ } \Pi_{A^{0} \times 0}\left(B_{\epsilon}\right)
\end{aligned}
$$

Next, we find the top arrow.

Constructing κ from κ_{ϵ}

$$
\begin{aligned}
& / A^{0} \times \mathbb{\square} \longleftarrow^{\pi^{*}} / A^{0} \longleftarrow \pi_{*}^{\pi_{*}} / A^{0} \times \mathbb{\square} \epsilon^{\epsilon^{*}} / A
\end{aligned}
$$

Constructing κ from κ_{ϵ}

The component of this composite 2-cell at $q: B \rightarrow A$ defines a map

$$
\kappa:\left(\Pi_{A} B\right)^{0} \times 0 \rightarrow \Pi_{A^{0} \times 0}\left(B^{0} \times 0\right)
$$

over $X^{\square} \times 0$.

Constructing κ from κ_{ϵ}

The component of this composite 2-cell at $q: B \rightarrow A$ defines a map

$$
\kappa:\left(\Pi_{A} B\right)^{0} \times \mathbb{\square} \rightarrow \Pi_{A^{0} \times 0}\left(B^{0} \times \mathbb{0}\right)
$$

over $X^{0} \times 0$.

$\left(\Pi_{A} B\right)^{\rrbracket} \times \mathbb{\square} / X^{\rrbracket} \times \rrbracket \longleftarrow \pi^{*}\left(\Pi_{A} B\right)^{\mathbb{1}} / X^{\rrbracket} \longleftarrow \pi_{*}\left(\Pi_{A} B\right)_{\epsilon} / X^{\rrbracket} \times \rrbracket \longleftarrow \epsilon^{*} \longrightarrow \Pi_{A} B / X$

Constructing κ from κ_{ϵ}

We now have to verify that the square below commutes.

$$
\begin{aligned}
& \left(\Pi_{A} B\right)^{\mathbb{\square}} \times \mathbb{\square} \xrightarrow{\kappa} \Pi_{A^{0} \times \mathbb{1}} B^{\square} \times \mathbb{\square} \\
& \delta \Rightarrow p_{*} q \downarrow \downarrow \downarrow\left(p^{0} \times 1\right)_{*}(\delta \Rightarrow q) \\
& \left(\Pi_{A} B\right)_{\epsilon} \xrightarrow[\kappa_{\epsilon}]{ } \Pi_{A^{0} \times 0}\left(B_{\epsilon}\right)
\end{aligned}
$$

Constructing κ from κ_{ϵ}

Constructing κ from κ_{ϵ}

$$
\begin{aligned}
& \left(p^{0} \times 0\right) * \downarrow \downarrow\left(p^{0} \times 0\right) * \\
& / X^{0} \times 0=
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{?}{=} \\
& \xlongequal{=} \quad \mid A^{0} \times 0 \pi^{\pi^{*}} \\
& \Uparrow \nu \\
& \| \\
& \left(p^{0} \times 0\right)_{*} \downarrow \underset{\downarrow}{p_{*}^{0}} \cong \downarrow^{\prime} \cong\left(p^{0} \times 1\right)_{*} \\
& / X^{0} \times \mathbb{\square} \overleftarrow{\pi^{*}} / X^{\rrbracket} \longleftarrow \pi_{*} / X^{\rrbracket} \times 0
\end{aligned}
$$

Constructing κ from κ_{ϵ}

$$
\begin{aligned}
& / A^{0} \times \mathbb{\square} \xrightarrow{\pi_{!}} / A^{0} \xrightarrow{\pi^{*}} / A^{0} \times \mathbb{D} \quad / A^{0} \times \mathbb{\longrightarrow} \xrightarrow{\pi_{!}} / A^{0} \xrightarrow{\pi^{*}} / A^{0} \times \mathbb{0} \\
& \|\quad \Uparrow \iota \quad\| \\
& / A^{0} \times \mathbb{\square}=/ A^{0} \times \mathbb{Q} \\
& \left(p^{0} \times 0\right)!\downarrow \downarrow\left(p^{0} \times 0\right)! \\
& / X^{\square} \times \mathbb{\square}=/ X^{\square} \times \mathbb{\square} \\
& \left(\rho^{0} \times 0\right)!\downarrow \quad \rho_{1}^{0} \cong \quad \downarrow\left(\rho^{0} \times 1\right)! \\
& \stackrel{?}{=} \quad \mid X^{\bullet} \times \square \xrightarrow[\pi!]{\longrightarrow} / X^{\square} \xrightarrow[\pi^{*}]{\longrightarrow} / X^{0} \times \mathbb{0}
\end{aligned}
$$

Constructing κ from κ_{ϵ}

$$
\begin{aligned}
& \left\|\quad \Uparrow \iota \quad \downarrow_{\pi^{*}} \cong \quad \downarrow_{\pi^{*}} \stackrel{?}{=}\right\| \quad \| \quad \text { 介 } \quad \| \quad \downarrow^{*}
\end{aligned}
$$

Constructing κ from κ_{ϵ}

$$
\begin{aligned}
& / A^{0} \times 0 \xrightarrow{\pi_{1}} / A^{0} \xrightarrow{p_{1}^{0}} / X^{0} \quad / A^{0} \times 0 \xrightarrow{\left({ }^{0} \times 1\right)} / X^{0} \times 0 \xrightarrow{\pi_{1}} / X^{0} \\
& \| \quad \pi \uparrow \\
& \pi \uparrow=\| \\
& \pi{ }^{\pi} \uparrow \\
& \left|A^{0} \times \mathbb{I}=\right| A^{0} \times 0 \xrightarrow[\left(p^{0} \times 0\right)!]{ } / X^{0} \times 0
\end{aligned}
$$

Constructing the Retract ρ_{ϵ}

Since p is a fibration, $\delta \Rightarrow p$ is a trivial fibration and therefore it has a section:

$$
\begin{gathered}
/ A_{\epsilon} \stackrel{\left(p^{*} \epsilon\right)^{*}}{\leftrightarrows} / A \\
\sigma^{*} \uparrow \cong \quad \| \\
/ A^{0} \times \mathbb{\epsilon ^ { * }}
\end{gathered}
$$

Constructing the Retract ρ_{ϵ}

$$
\begin{aligned}
& / \boldsymbol{A}_{\epsilon}=/ \boldsymbol{A}_{\epsilon} \stackrel{\left(p^{*} \epsilon\right)^{*}}{\leftrightarrows} / \boldsymbol{A}
\end{aligned}
$$

$$
\begin{aligned}
& / X^{\rrbracket} \times \mathbb{\square} / X^{\rrbracket} \times \rrbracket \leftarrow \underset{\epsilon^{*}}{ } / X
\end{aligned}
$$

Constructing the Retract ρ_{ϵ}

$$
\begin{aligned}
& / A_{\epsilon}=/ A_{\epsilon} \stackrel{\left(p^{*} \epsilon\right)^{*}}{\longleftarrow} / A \\
& / A_{\epsilon} \stackrel{\left(p^{*} \epsilon\right)^{*}}{\leftrightarrows} / A
\end{aligned}
$$

$$
\begin{aligned}
& / X^{\rrbracket} \times \mathbb{\square}=/ X^{\rrbracket} \times \rrbracket \leftarrow \underset{\epsilon^{*}}{ } / X
\end{aligned}
$$

Constructing the Retract ρ_{ϵ}

$$
\begin{aligned}
& / X \longleftarrow / A \\
& / X \stackrel{p_{*}}{\longleftarrow} / A \\
& \epsilon^{*} \downarrow=\downarrow \quad= \\
& / X^{\rrbracket} \times \rrbracket \overleftarrow{\epsilon^{*}} / X
\end{aligned}
$$

Constructing the Retract ρ_{ϵ}

$$
\begin{aligned}
& \left(\Pi_{A} B\right)^{\mathbb{0}} \times \mathbb{\square} \xrightarrow{\kappa} \Pi_{A^{1} \times \mathbb{1}} B^{\square} \times \mathbb{\square} \quad\left(\Pi_{A} B\right)^{\mathbb{0}} \times \mathbb{\square} \\
& \delta \Rightarrow p_{*} q \downarrow \quad \downarrow\left(p^{1} \times\right)_{*}(\delta \Rightarrow q) \quad \downarrow \delta \Rightarrow p_{*} q \\
& \left(\Pi_{A} B\right)_{\epsilon} \xrightarrow[\kappa_{\epsilon}]{ } \Pi_{A^{0} \times 0}\left(B_{\epsilon}\right) \xrightarrow[\rho_{\epsilon}]{ }\left(\Pi_{A} B\right)_{\epsilon}
\end{aligned}
$$

Constructing ρ from ρ_{ϵ}

$$
\begin{aligned}
& \mid A^{0} \times 1<^{\pi^{*}} / A^{0} \Vdash^{\pi_{*}} / A^{0} \times 1 \leftarrow^{\epsilon^{*}} / A
\end{aligned}
$$

Completing the Proof

Similar to the commutativity of the square involving κ_{ϵ} and κ we show that the following square commutes:

$$
\begin{aligned}
& \Pi_{A^{\natural} \times \square} B^{\square} \times \square \xrightarrow{\rho}\left(\Pi_{A} B\right)^{\square} \times \square \\
& \left(p^{0} \times 0\right)_{*}(\delta \Rightarrow q) \downarrow \downarrow \delta \Rightarrow p_{*} q \\
& \Pi_{A^{0} \times 0}\left(B_{\epsilon}\right) \xrightarrow[\rho_{\epsilon}]{ }\left(\Pi_{A} B\right)_{\epsilon}
\end{aligned}
$$

That ρ is a retract of κ follows from the fact that ρ_{ϵ} is a retract of κ_{ϵ} and the iso 2 -cells pasted to the left of κ_{ϵ} and ρ_{ϵ}, respectively, are pairwise inverses.

$$
\begin{aligned}
& \left(\Pi_{A} B\right)^{\mathbb{\square}} \times \mathbb{\square} \xrightarrow{\kappa} \Pi_{A^{0} \times \rrbracket} B^{\rrbracket} \times \mathbb{\square} \xrightarrow{\rho}\left(\Pi_{A} B\right)^{\mathbb{\square}} \times \mathbb{\square} \\
& \delta \Rightarrow p_{*} q \downarrow \downarrow\left(p^{0} \times 0\right)_{*}(\delta \Rightarrow q) \quad \downarrow \delta \Rightarrow p_{*} q \\
& \left(\Pi_{A} B\right)_{\epsilon} \xrightarrow[\kappa_{\epsilon}]{ } \Pi_{A^{0} \times \mathbb{0}}\left(B_{\epsilon}\right) \xrightarrow[\rho_{\epsilon}]{ }\left(\Pi_{A} B\right)_{\epsilon}
\end{aligned}
$$

