
Conservativity of

The Calculus of Constructions
over

Higher-order Heyting Arithmetic

Daniël Otten Joint work with Benno van den Berg



Overview

We investigate the relation between arithmetic and type theory.

We compare:

• Higher-order Heyting Arithmetic (HAH), and

• The Calculus of Constructions (CC),

along with additional assumptions (CC+
⏞⏞⏞⏞⏞⏞⏞ℕ, Σ, W, propext, funext

).

We will show that CC+ is a conservative extension of HAH.

1/19



Contents

arithmetic type theory

1/19



Higher-order Heyting Arithmetic

In higher-order logic we can quantify over powersets of the domain.

If we write ∃𝑥𝑛 or ∀𝑥𝑛 then 𝑥 is an element of the 𝑛-th powerset:

• 𝑥0 is an element of the domain,

• 𝑥1 is a set,

• 𝑥2 is a set of sets,

• and so on.

For 𝑥𝑛 and 𝑌 𝑛+1 we have a new atomic formula 𝑥 ∈ 𝑌.
We have two additional logical axiom schemes:

∀𝑋, 𝑌 𝑛+1 (∀𝑧𝑛 (𝑧 ∈ 𝑋 ↔ 𝑧 ∈ 𝑌 ) → 𝑋 = 𝑌 ), (extensionality)

∃𝑋𝑛+1 ∀𝑧𝑛 (𝑧 ∈ 𝑋 ↔ 𝑃[𝑧]). (comprehension)

HAH has the axioms of PA but in intuitionistic higher-order logic.
2/19



Contents

arithmetic type theory

3/19



The Calculus of Constructions

CC is a minimalistic and impredicative version of type theory.

There are only two primitive types: Type0 and Type1.

We view these as universes and we assume Type0 ∶ Type1.

We have only one way to construct new types:

𝐴 ∶ Type𝑖 𝑥 ∶ 𝐴 ⊢ 𝐵[𝑥] ∶ Type𝑗
(Π-F, impredicative),

Π(𝑥 ∶ 𝐴) 𝐵[𝑥] ∶ Type𝑗

Terms of Π(𝑥 ∶ 𝐴) 𝐵[𝑥] are functions: they map 𝑥 ∶ 𝐴 to 𝑦 ∶ 𝐵[𝑥].
We write 𝐴 → 𝐵 for Π(𝑥 ∶ 𝐴) 𝐵.

Compare this rule to Martin-Löf Type Theory where we have:

𝐴 ∶ Type𝑖 𝑥 ∶ 𝐴 ⊢ 𝐵[𝑥] ∶ Type𝑗
(Π-F, predicative),

Π(𝑥 ∶ 𝐴) 𝐵[𝑥] ∶ Typemax{𝑖,𝑗}
4/19



Dependent Functions

Examples of types are:

Π(𝑋 ∶ Type0) (𝑋 → 𝑋) ∶ Type0,
Type0 → Type0 ∶ Type1.

We can define functions and apply them:

Π(𝑥 ∶ 𝐴) 𝐵[𝑥] ∶ Type𝑖 𝑥 ∶ 𝐴 ⊢ 𝑏[𝑥] ∶ 𝐵[𝑥]
(Π-I),

𝜆(𝑥 ∶ 𝐴) 𝑏[𝑥] ∶ Π(𝑥 ∶ 𝐴) 𝐵[𝑥]

𝑓 ∶ Π(𝑥 ∶ 𝐴) 𝐵[𝑥] 𝑎 ∶ 𝐴
(Π-E),

𝑓 𝑎 ∶ 𝐵[𝑎]

We can define for example:

id ∶ Π(𝑋 ∶ Type0) (𝑋 → 𝑋),
id ≔ 𝜆(𝑋 ∶ Type0) 𝜆(𝑥 ∶ 𝑋) 𝑥.

5/19



Contents

arithmetic type theory

6/19



Higher-order Logic in The Calculus of Constructions

Think of 𝐴 ∶ Type0 as a proposition and of 𝑎 ∶ 𝐴 as a proof for 𝐴.

We write ∀(𝑥 ∶ 𝐴) 𝐵[𝑥] for Π(𝑥 ∶ 𝐴) 𝐵[𝑥] if we have 𝐵[𝑥] ∶ Type0.

The other logical connectives can be defined:

⊥ ≔ ∀(𝐶 ∶ Type0) 𝐶,
⊤ ≔ ∀(𝐶 ∶ Type0) (𝐶 → 𝐶),

𝐴 ∨ 𝐵 ≔ ∀(𝐶 ∶ Type0) ((𝐴 → 𝐶) → ((𝐵 → 𝐶) → 𝐶)),
𝐴 ∧ 𝐵 ≔ ∀(𝐶 ∶ Type0) ((𝐴 → (𝐵 → 𝐶)) → 𝐶),

∃(𝑥 ∶ 𝐴) 𝐵[𝑥] ≔ ∀(𝐶 ∶ Type0) (∀(𝑥 ∶ 𝐴) (𝐵[𝑥] → 𝐶) → 𝐶),
𝒫 𝐴 ≔ 𝐴 → Type0,

(𝑎 =𝐴 𝑎′) ≔ ∀(𝑃 ∶ 𝒫 𝐴) (𝑃 𝑎 → 𝑃 𝑎′).
7/19



Natural Numbers

We can define a weak version of ℕ:

ℕw ∶ Type0,
ℕw ≔ Π(𝑍 ∶ Type0) (𝑍 → ((𝑍 → 𝑍) → 𝑍)).

The idea is to encode 𝑛 as 𝜆𝑍 𝜆𝑧 𝜆𝑓 𝑓𝑛 𝑧. We can define 0 and S:

0 ∶ ℕw,
0 ≔ 𝜆(𝑍 ∶ Type0) 𝜆(𝑧 ∶ 𝑍) 𝜆(𝑓 ∶ 𝑍 → 𝑍) 𝑧,

S ∶ ℕw → ℕw,
S ≔ 𝜆(𝑛 ∶ ℕw) 𝜆(𝑍 ∶ Type0) 𝜆(𝑧 ∶ 𝑍) 𝜆(𝑓 ∶ 𝑍 → 𝑍) 𝑓 (𝑛 𝑍 𝑧 𝑓).

8/19



Natural Numbers

ℕw satisfies the rule:

𝐶 ∶ Type0 𝑐 ∶ 𝐶 𝑓 ∶ 𝐶 → 𝐶
(ℕ-E, weak),

rec𝐶,𝑐,𝑓 ∶ ℕ → 𝐶

Simply take rec𝐶,𝑐,𝑓 ≔ 𝜆(𝑛 ∶ ℕw) 𝑛 𝐶 𝑐 𝑓.

However this is weaker than the following rule:

𝑛 ∶ ℕ ⊢ 𝐶[𝑛] ∶ Type𝑖 𝑐 ∶ 𝐶[0] 𝑓 ∶ Π(𝑛 ∶ ℕ) (𝐶[𝑛] → 𝐶[S𝑛])
(ℕ-E),

ind𝐶,𝑐,𝑓 ∶ Π(𝑛 ∶ ℕ) 𝐶[𝑛]

We can not define a ℕ ∶ Type0 satisfying ℕ-E in CC. (Geuvers, 2001)

So, we cannot prove induction in CC.

In addition, we cannot prove extensionality or 0 ≠ 1. (Smith, 1988)
9/19



Additional Assumptions

We replace Type0 ∶ Type1 with Prop, Set ∶ Type.

We assume that there exists a ℕ ∶ Set satisfying ℕ-E.

We also add 𝟘, 𝟙, 𝐴 + 𝐵, Σ(𝑥 ∶ 𝐴) 𝐵[𝑥], W(𝑥 ∶ 𝐴) 𝐵[𝑥], and ‖𝐴‖.

This brings us closer to CIC, which is implemented by Coq and Lean.

Lastly, we assume two axioms:

funext ∶ ∀(𝑓, 𝑓 ′ ∶ Π(𝑥 ∶ 𝐴) 𝐵[𝑥]) (∀(𝑥 ∶ 𝐴) (𝑓 𝑥 = 𝑓 ′ 𝑥) → 𝑓 = 𝑓 ′),
propext ∶ ∀(𝑃 , 𝑃 ′ ∶ Prop) ((𝑃 → 𝑃 ′) ∧ (𝑃 ′ → 𝑃) → 𝑃 = 𝑃 ′).

10/19



Contents

arithmetic type theory

11/19



Main Result

Theorem

CC+ is a conservative extension of HAH.

Proof Sketch. We can show that CC+ proves the axioms of HAH.

The difficult part is showing that it does not prove more.

We first give a conservative extension of HAH, named HAHP

⏞⏞⏞⏞⏞⏞⏞𝜆𝑥 𝑏[𝑥], {𝑓} (𝑎), ⟨𝑎,𝑏⟩

.

Then we construct an arrow:

HAH CC+

HAHP

And show that the diagram commutes up to logical equivalence.

12/19



Interpreting Propositions in HAHP

We will interpret the propositions, sets, and types of CC+ in HAHP.

Propositions are easy, we can interpret them as follows:

Definition (subsingleton)

A subsingleton is a set 𝑃 ⊆ {0}.
A morphism from 𝑃 to 𝑄 is just a function 𝑃 → 𝑄.

13/19



Interpreting Sets in HAHP

Sets are more difficult because the type theory is impredicative.

We have to put restrictions on functions to avoid cardinality issues:

Definition (partial equivalence relation)

A PER is a relation 𝑅 ⊆ ℕ × ℕ that is symmetric and transitive.

We define:

dom(𝑅) ≔ {𝑛 ∈ ℕ | ⟨𝑛, 𝑛⟩ ∈ 𝑅}, (domain)

[𝑛]𝑅 ≔ {𝑚 ∈ ℕ | ⟨𝑛, 𝑚⟩ ∈ 𝑅}, (equivalence class)

ℕ/𝑅 ≔ {[𝑛]𝑅 | 𝑛 ∈ dom(𝑅)}. (quotient)

A morphism from 𝑅 to 𝑆 is a function 𝐹 ∶ ℕ/𝑅 → ℕ/𝑆 such that

there exists a computable 𝑓 ∶ ℕ ⇀ ℕ such that:

𝑛 ∈ dom(𝑅) implies 𝑓(𝑛) ∈ 𝐹([𝑛]𝑅).
14/19



Interpreting Types in HAHP

We interpret types in a similar way:

Definition (assembly)

An assembly consists of an 𝐴 ⊆ 𝒫𝑛(ℕ) and a relation ⊩𝐴 ⊆ ℕ × 𝐴
such that for every 𝑎 ∈ 𝐴 there exists an 𝑛 ∈ ℕ with 𝑛 ⊩𝐴 𝑎.
A morphism from 𝐴 to 𝐵 is a function 𝐹 ∶ 𝐴 → 𝐵 such that

there exists a computable 𝑓 ∶ ℕ ⇀ ℕ such that:

𝑛 ⊩𝐴 𝑎 implies 𝑓(𝑛) ⊩ℬ 𝐹(𝐴).

15/19



Conservativity

This gives us a model of CC+ and an interpretation of CC+ in HAHP.

The following diagram is commutative (up to logical equivalence):

HAH CC+

HAHP

We conclude:

CC+ is a conservative extension of HAH,
𝜆P2+ is a conservative extension of HA2,
𝜆P+ is a conservative extension of HA.

16/19



Martin-Löf Type Theory

ML is not impredicative so our logical definitions do not work.

However, we can interpret higher-order logic as follows:

⊥∗ ≔ 𝟘, (𝑎𝑛 ∈ 𝑋𝑛+1)∗ ≔ 𝑋 𝑎,
⊤∗ ≔ 𝟙, (𝑎𝑛 = 𝑏𝑛)∗ ≔ (𝑎 =𝒫𝑛ℕ 𝑏),

(𝐴 ∨ 𝐵)∗ ≔ 𝐴∗ + 𝐵∗, (∃𝑥𝑛 𝐵(𝑥𝑛))∗ ≔ Σ(𝑥 ∶ 𝒫𝑛 ℕ) 𝐵(𝑥𝑛)∗,
(𝐴 ∧ 𝐵)∗ ≔ 𝐴∗ × 𝐵∗, (∀𝑥𝑛 𝐵(𝑥𝑛))∗ ≔ Π(𝑥 ∶ 𝒫𝑛 ℕ) 𝐵(𝑥𝑛)∗,

(𝐴 → 𝐵)∗ ≔ 𝐴∗ → 𝐵∗.

For this interpretation, ML1 is not conservative over HA2:

ML1 proves choice but not extensionality or comprehension.

17/19



Martin-Löf Type Theory

Alternatively, with ‖ ⋅ ‖ we can interpret higher-order logic as follows:

⊥∘ ≔ 𝟘, (𝑎𝑛 ∈ 𝑋𝑛+1)∘ ≔ ‖𝑋 𝑎‖,
⊤∘ ≔ 𝟙, (𝑎𝑛 = 𝑏𝑛)∘ ≔ (𝑎 =𝒫𝑛ℕ 𝑏),

(𝐴 ∨ 𝐵)∘ ≔ ‖𝐴∘ + 𝐵∘‖, (∃𝑥𝑛 𝐵(𝑥𝑛))∘ ≔ ‖Σ(𝑥 ∶ 𝒫𝑛 ℕ) 𝐵(𝑥𝑛)∘‖,
(𝐴 ∧ 𝐵)∘ ≔ 𝐴∘ × 𝐵∘, (∀𝑥𝑛 𝐵(𝑥𝑛))∘ ≔ Π(𝑥 ∶ 𝒫𝑛 ℕ) 𝐵(𝑥𝑛)∘,

(𝐴 → 𝐵)∘ ≔ 𝐴∘ → 𝐵∘.

For this interpretation, ML1 with ‖𝐴‖ ∶ Type0 might be conservative

over HA2 without extensionality.

18/19



Summary

For impredicative type theory we have:

CC+ is a conservative extension of HAH,
𝜆P2+ is a conservative extension of HA2,
𝜆P+ is a conservative extension of HA,

For predicative type theory we have:

ML1 is not a conservative extension of HA2 using ∗,
ML1 + ‖ ⋅ ‖ is a conservative extension of HA2 − ext using ∘.

The last result is still work in progress.

19/19


	Arithmetic
	Type Theory
	Interpreting Arithmetic in Type Theory
	Interpreting Type Theory in Arithmetic

