Conservativity of

The Calculus of Constructions

over

Higher-order Heyting Arithmetic

Overview

We investigate the relation between arithmetic and type theory.
We compare:

- Higher-order Heyting Arithmetic (HAH), and
- The Calculus of Constructions (CC), along with additional assumptions (CC +).
$\overbrace{\mathbb{N}, \Sigma, \mathrm{W}, \text { propext, funext }}$

We will show that CC+ is a conservative extension of HAH.

Contents

arithmetic
 \rightleftarrows type theory

Higher-order Heyting Arithmetic

In higher-order logic we can quantify over powersets of the domain. If we write $\exists x^{n}$ or $\forall x^{n}$ then x is an element of the n-th powerset:

- x^{0} is an element of the domain,
- x^{1} is a set,
- x^{2} is a set of sets,
- and so on.

For x^{n} and Y^{n+1} we have a new atomic formula $x \in Y$.
We have two additional logical axiom schemes:

$$
\begin{gathered}
\forall X, Y^{n+1}\left(\forall z^{n}(z \in X \leftrightarrow z \in Y) \rightarrow X=Y\right), \quad \text { (extensionality) } \\
\exists X^{n+1} \forall z^{n}(z \in X \leftrightarrow P[z]) . \quad \text { (comprehension) }
\end{gathered}
$$

HAH has the axioms of PA but in intuitionistic higher-order logic.

Contents
arithmetic \rightleftarrows type theory

The Calculus of Constructions

CC is a minimalistic and impredicative version of type theory.
There are only two primitive types: Type $_{0}$ and Type ${ }_{1}$.
We view these as universes and we assume Type ${ }_{0}:$ Type $_{1}$.
We have only one way to construct new types:

$$
\frac{A: \text { Type }_{i} \quad x: A \vdash B[x]: \text { Type }_{j}}{\Pi(x: A) B[x]: \text { Type }_{j}}(\Pi-\mathrm{F}, \text { impredicative }),
$$

Terms of $\Pi(x: A) B[x]$ are functions: they map $x: A$ to $y: B[x]$.
We write $A \rightarrow B$ for $\Pi(x: A) B$.
Compare this rule to Martin-Löf Type Theory where we have:

$$
\frac{A: \text { Type }_{i} \quad x: A \vdash B[x]: \text { Type }_{j}}{\Pi(x: A) B[x]: \operatorname{Type}_{\max \{i, j\}}} \text { (П-F, predicative), }
$$

Dependent Functions

Examples of types are:

$$
\begin{array}{r}
\Pi\left(X: \text { Type }_{0}\right)(X \rightarrow X): \text { Type }_{0} \\
\text { Type }_{0} \rightarrow \text { Type }_{0}: \text { Type }_{1} .
\end{array}
$$

We can define functions and apply them:

$$
\begin{gathered}
\Pi(x: A) B[x]: \text { Type }_{i} \quad x: A \vdash b[x]: B[x] \\
\lambda(x: A) b[x]: \Pi(x: A) B[x] \\
\frac{f: \Pi(x: A) B[x] \quad a: A}{f a: B[a]}(\Pi-\mathrm{E}),
\end{gathered}
$$

We can define for example:

$$
\begin{aligned}
& \text { id }: \Pi\left(X: \text { Type }_{0}\right)(X \rightarrow X) \\
& \text { id }:=\lambda\left(X: \text { Type }_{0}\right) \lambda(x: X) x .
\end{aligned}
$$

Contents
arithmetic \rightleftarrows type theory

Higher-order Logic in The Calculus of Constructions

Think of $A:$ Type $_{0}$ as a proposition and of $a: A$ as a proof for A.
We write $\forall(x: A) B[x]$ for $\Pi(x: A) B[x]$ if we have $B[x]:$ Type $_{0}$.
The other logical connectives can be defined:

$$
\begin{aligned}
\perp & :=\forall\left(C: \text { Type }_{0}\right) C, \\
\top & :=\forall\left(C: \text { Type }_{0}\right)(C \rightarrow C), \\
A \vee B & :=\forall\left(C: \text { Type }_{0}\right)((A \rightarrow C) \rightarrow((B \rightarrow C) \rightarrow C)), \\
A \wedge B & :=\forall\left(C: \text { Type }_{0}\right)((A \rightarrow(B \rightarrow C)) \rightarrow C), \\
\exists(x: A) B[x] & :=\forall\left(C: \text { Type }_{0}\right)(\forall(x: A)(B[x] \rightarrow C) \rightarrow C), \\
\mathcal{P} A & :=A \rightarrow \text { Type }_{0}, \\
\left(a={ }_{A} a^{\prime}\right) & :=\forall(P: \mathcal{P} A)\left(P a \rightarrow P a^{\prime}\right) .
\end{aligned}
$$

Natural Numbers

We can define a weak version of \mathbb{N} :

$$
\begin{aligned}
& \mathbb{N}_{\mathrm{w}}: \text { Type }_{0} \\
& \mathbb{N}_{\mathrm{w}}:=\Pi\left(Z: \text { Type }_{0}\right)(Z \rightarrow((Z \rightarrow Z) \rightarrow Z))
\end{aligned}
$$

The idea is to encode n as $\lambda Z \lambda z \lambda f f^{n} z$. We can define 0 and S :

$$
\begin{aligned}
& 0: \mathbb{N}_{\mathrm{w}}, \\
& 0:=\lambda\left(Z: \text { Type }_{0}\right) \lambda(z: Z) \lambda(f: Z \rightarrow Z) z, \\
& \mathrm{~S}: \mathbb{N}_{\mathrm{w}} \rightarrow \mathbb{N}_{\mathrm{w}}, \\
& \mathrm{~S}:=\lambda\left(n: \mathbb{N}_{\mathrm{w}}\right) \lambda\left(Z: \text { Type }_{0}\right) \lambda(z: Z) \lambda(f: Z \rightarrow Z) f(n Z z f) .
\end{aligned}
$$

Natural Numbers

\mathbb{N}_{w} satisfies the rule:

$$
\frac{C: \text { Type }_{0} \quad c: C \quad f: C \rightarrow C}{\operatorname{rec}_{C, c, f}: \mathbb{N} \rightarrow C}(\mathbb{N}-E, \text { weak }),
$$

Simply take $\operatorname{rec}_{C, c, f}:=\lambda\left(n: \mathbb{N}_{\mathrm{w}}\right) n C c f$.
However this is weaker than the following rule:
$\frac{n: \mathbb{N} \vdash C[n]: \text { Type }_{i} \quad c: C[0] \quad f: \Pi(n: \mathbb{N})(C[n] \rightarrow C[\mathrm{~S} n])}{\operatorname{ind}_{C, c, f}: \Pi(n: \mathbb{N}) C[n]}(\mathbb{N}-\mathrm{E})$,

We can not define a \mathbb{N} : Type $_{0}$ satisfying $\mathbb{N}-E$ in CC. (Geuvers, 2001) So, we cannot prove induction in CC.

In addition, we cannot prove extensionality or $0 \neq 1$. (Smith, 1988)

Additional Assumptions

We replace Type ${ }_{0}$: Type ${ }_{1}$ with Prop, Set : Type.
We assume that there exists a \mathbb{N} : Set satisfying $\mathbb{N}-E$.

We also add $\mathbb{0}, \mathbb{1}, A+B, \Sigma(x: A) B[x], \mathrm{W}(x: A) B[x]$, and $\|A\|$.
This brings us closer to CIC, which is implemented by Coq and Lean.

Lastly, we assume two axioms:

$$
\begin{aligned}
& \text { funext }: \forall\left(f, f^{\prime}: \Pi(x: A) B[x]\right)\left(\forall(x: A)\left(f x=f^{\prime} x\right) \rightarrow f=f^{\prime}\right) \text {, } \\
& \text { propext }: \forall\left(P, P^{\prime}: \operatorname{Prop}\right)\left(\left(P \rightarrow P^{\prime}\right) \wedge\left(P^{\prime} \rightarrow P\right) \rightarrow P=P^{\prime}\right) .
\end{aligned}
$$

Contents
arithmetic \rightleftarrows type theory

Main Result

Theorem

$\mathrm{CC}+$ is a conservative extension of HAH .

Proof Sketch. We can show that CC+ proves the axioms of HAH.
The difficult part is showing that it does not prove more.
We first give a conservative extension of HAH, named HAHP.
Then we construct an arrow:

And show that the diagram commutes up to logical equivalence.

Interpreting Propositions in HAHP

We will interpret the propositions, sets, and types of CC+ in HAHP.

Propositions are easy, we can interpret them as follows:

Definition (subsingleton)

A subsingleton is a set $P \subseteq\{0\}$.
A morphism from P to Q is just a function $P \rightarrow Q$.

Interpreting Sets in HAHP

Sets are more difficult because the type theory is impredicative. We have to put restrictions on functions to avoid cardinality issues:

Definition (partial equivalence relation)

A PER is a relation $R \subseteq \mathbb{N} \times \mathbb{N}$ that is symmetric and transitive. We define:

$$
\begin{aligned}
\operatorname{dom}(R) & :=\{n \in \mathbb{N} \mid\langle n, n\rangle \in R\}, \\
{[n]_{R} } & :=\{m \in \mathbb{N} \mid\langle n, m\rangle \in R\}, \\
\mathbb{N} / R & :=\left\{[n]_{R} \mid n \in \operatorname{dom}(R)\right\} .
\end{aligned}
$$

$$
[n]_{R}:=\{m \in \mathbb{N} \mid\langle n, m\rangle \in R\}, \quad \text { (equivalence class) }
$$

A morphism from R to S is a function $F: \mathbb{N} / R \rightarrow \mathbb{N} / S$ such that there exists a computable $f: \mathbb{N} \rightharpoonup \mathbb{N}$ such that:

$$
n \in \operatorname{dom}(R) \text { implies } f(n) \in F\left([n]_{R}\right)
$$

Interpreting Types in HAHP

We interpret types in a similar way:

Definition (assembly)

An assembly consists of an $A \subseteq \mathcal{P}^{n}(\mathbb{N})$ and a relation $\Vdash_{A} \subseteq \mathbb{N} \times A$ such that for every $a \in A$ there exists an $n \in \mathbb{N}$ with $n \Vdash_{A} a$. A morphism from A to B is a function $F: A \rightarrow B$ such that there exists a computable $f: \mathbb{N} \rightharpoonup \mathbb{N}$ such that:

$$
n \Vdash_{A} a \text { implies } f(n) \Vdash_{\mathcal{B}} F(A) .
$$

Conservativity

This gives us a model of CC+ and an interpretation of CC+ in HAHP.
The following diagram is commutative (up to logical equivalence):

We conclude:
CC+ is a conservative extension of HAH,
$\lambda \mathrm{P} 2+$ is a conservative extension of HA2,
$\lambda P+$ is a conservative extension of HA.

Martin-Löf Type Theory

ML is not impredicative so our logical definitions do not work. However, we can interpret higher-order logic as follows:

$$
\begin{array}{rlrl}
\perp^{*} & :=\mathbb{0}, & \left(a^{n} \in X^{n+1}\right)^{*}:=X a, \\
\mathrm{~T}^{*} & :=\mathbb{1}, & \left(a^{n}=b^{n}\right)^{*}:=\left(a=_{\mathcal{P}^{n} \mathbb{N}} b\right), \\
(A \vee B)^{*} & :=A^{*}+B^{*}, & \left(\exists x^{n} B\left(x^{n}\right)\right)^{*}:=\Sigma\left(x: \mathcal{P}^{n} \mathbb{N}\right) B\left(x^{n}\right)^{*}, \\
(A \wedge B)^{*} & :=A^{*} \times B^{*}, & \left(\forall x^{n} B\left(x^{n}\right)\right)^{*}:=\Pi\left(x: \mathcal{P}^{n} \mathbb{N}\right) B\left(x^{n}\right)^{*}, \\
(A \rightarrow B)^{*} & :=A^{*} \rightarrow B^{*} . & &
\end{array}
$$

For this interpretation, ML1 is not conservative over HA2:
ML1 proves choice but not extensionality or comprehension.

Martin-Löf Type Theory

Alternatively, with $\|\cdot\|$ we can interpret higher-order logic as follows:

$$
\begin{aligned}
& \perp^{\circ}:=\mathbb{0}, \\
& \mathrm{T}^{\circ}:=\mathbb{1},
\end{aligned}
$$

$$
\begin{aligned}
\left(a^{n} \in X^{n+1}\right)^{\circ} & :=\|X a\| \\
\left(a^{n}=b^{n}\right)^{\circ} & :=\left(a==_{\mathcal{P}^{n} \mathbb{N}} b\right)
\end{aligned}
$$

$$
(A \vee B)^{\circ}:=\left\|A^{\circ}+B^{\circ}\right\|
$$

$$
\left(\exists x^{n} B\left(x^{n}\right)\right)^{\circ}:=\left\|\Sigma\left(x: \mathcal{P}^{n} \mathbb{N}\right) B\left(x^{n}\right)^{\circ}\right\|
$$

$$
(A \wedge B)^{\circ}:=A^{\circ} \times B^{\circ}, \quad\left(\forall x^{n} B\left(x^{n}\right)\right)^{\circ}:=\Pi\left(x: \mathcal{P}^{n} \mathbb{N}\right) B\left(x^{n}\right)^{\circ}
$$

$$
(A \rightarrow B)^{\circ}:=A^{\circ} \rightarrow B^{\circ} .
$$

For this interpretation, ML1 with $\|A\|:$ Type $_{0}$ might be conservative over HA2 without extensionality.

Summary

For impredicative type theory we have:
CC + is a conservative extension of HAH,
$\lambda \mathrm{P} 2+$ is a conservative extension of HA2,
$\lambda \mathrm{P}+$ is a conservative extension of HA,
For predicative type theory we have:
ML1 is not a conservative extension of HA2 using *,
ML1 $+\|\cdot\|$ is a conservative extension of HA2 - ext using \circ.
The last result is still work in progress.

