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Kan complexes Symmetric effective Kan complexes

The simplex category

Define the simplex category ∆ as follows:

Objects are of the form [n] = N≤n. We see them as linearly
ordered sets of size n + 1.

Morphisms are order-preserving functions.

Example

•

• • •

(1)

is a morphism in ∆ from [0] to [2]
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Degeneracy maps

There are two special classes of morphisms in ∆.

For 0 ≤ i ≤ n, we have a degeneracy map

si : [n + 1] → [n] (2)

hitting i twice.

si (k) =

{
k if k ≤ i

k − 1 if k > i
(3)

Example

• • • •

• • •

(4)
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Face maps

There are two special classes of morphisms in ∆.

For 0 ≤ i ≤ n, we have a face map

di : [n] → [n + 1] (5)

skipping over i .

di (k) =

{
k if k < i

k + 1 if k ≥ i
(6)

Example

• • •

• • • •

(7)
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Some Remarks

All morphisms in ∆ can be written as m ◦ e, where e is a
composition of degeneracy maps and m a composition of face
maps.

There are some composition laws:

sj ◦ dk =


dk−1 ◦ sj if k > j + 1

1 if k ∈ {j , j + 1}
dk ◦ sj−1 if k < j

(8)

In general, we will write sj ◦ dk = dk ′ ◦ sj ′ if k ̸= j , j + 1.
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Simplicial Sets

A simplicial set is a presheaf on ∆.

More generally, a simplicial object in a category C is a functor

X : ∆op → C (9)

Because morphisms in ∆ are generated by face and degeneracy
maps, to give a simplicial set X , we need to give

for each n ∈ N a set Xn.

An action on degeneracy maps X (si ) : Xn → Xn+1.

An action on face maps X (di ) : Xn+1 → Xn.
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Example: Oriented hypergraphs

• •

•

•

• (10)
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The standard simplex

Recall that we have for each object [n] of ∆ a simplicial set of
morphisms into [n].

∆n = ∆
[
(−), [n]

]
(11)

∆n is called a standard simplex or a representable simplex.

Recall that:

For any simplicial set X we have that morphisms ∆n → X
corresponds to elements of Xn.

Every presheaf is a colimit of representables.

There is a lattice structure on subobjects of the standard
simplex (sieves).

Presheaves have an internal logic.
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Horns

For all i ≤ n, we have all faces of the standard simplex
di ⊆ ∆n, containing morphisms that factor trough di .

di ([m]) = {f : [m] → [n]|f doesn’t hit i} (12)

We also have horns Λn
k for all 0 ≤ k ≤ n.

Λn
k =

⋃
i ̸=k

di (13)

If k ̸= 0, n, we call Λn
k an inner horn.
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Example: Oriented hypergraphs

• •

•

•

• (14)

∆0

Λ2
1 ∆1

∆1 ∆2

G
(15)
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∞-categories and Kan complexes

Let G be a simplicial set. Consider problems of the form

Λn
m G

∆n

y

(16)

We say that G

Is an ∞-category if it has solutions for the above problem
whenever 0 < m < n.

Is a Kan complex (or ∞-groupoid) if it always has solutions
for the above problem.
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∞-categories and Kan complexes

∞-categories have a notion of composition.

0 2

1
gf

(17)

0 2

1

g ◦ f

gf

(18)

where degeneracy maps give identities.

Kan complexes also have a notion of inverses.

1 0

1
s0 f

(19)

1 0

1
s0 f

f −1

(20)
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Models for homotopy type theory

Kan complexes form the types in a model for homotopy type
theory.

Dependent types are based on Kan fibrations.

Λn
m X

∆n Y

x

α

y

(21)

λ-abstraction corresponds to pushforward of Kan fibrations.

Problem: the proof that Kan fibrations are closed under
pushforwards is not constructive.



Kan complexes Symmetric effective Kan complexes

Models for homotopy type theory

Kan complexes form the types in a model for homotopy type
theory.

Dependent types are based on Kan fibrations.

Λn
m X

∆n Y

x

α

y

(21)

λ-abstraction corresponds to pushforward of Kan fibrations.

Problem: the proof that Kan fibrations are closed under
pushforwards is not constructive.



Kan complexes Symmetric effective Kan complexes

Models for homotopy type theory

Kan complexes form the types in a model for homotopy type
theory.

Dependent types are based on Kan fibrations.

Λn
m X

∆n Y

x

α

y

(21)

λ-abstraction corresponds to pushforward of Kan fibrations.

Problem: the proof that Kan fibrations are closed under
pushforwards is not constructive.



Kan complexes Symmetric effective Kan complexes

Models for homotopy type theory

Kan complexes form the types in a model for homotopy type
theory.

Dependent types are based on Kan fibrations.

Λn
m X

∆n Y

x

α

y

(21)

λ-abstraction corresponds to pushforward of Kan fibrations.

Problem: the proof that Kan fibrations are closed under
pushforwards is not constructive.



Kan complexes Symmetric effective Kan complexes

Criticism on Kan complexes

First of all, we are not satisfied with mere existence of fillers. We
want functional fillers.

Λn
m G

∆n

y

fil(y)
(22)

And we want this function fil to satisfy some structural properties.
Benno and Eric reduced this property to stability under pullback
along degeneracy maps.
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Example of the condition

We start of by a Λ2
2-horn.

0 1

2 (23)

Λn
m G

∆n

y

(24)

For which we have a filler:

0 1

2 (25)

Λn
m G

∆n

y

fil(y)
(26)
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Pulling back a horn along a degeneracy map: the picture

0 1

2 (27)

We pull back our horn along s0.

0 1 2 3

0 1 2

≤ ≤ ≤

≤ ≤
(28)

Geometrically, we stretch out the red point 0 to a line.

0 1

2 3 (29)
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Getting a new horn

0 1

2 3 (30)

Notice: d0 and d1 are our original horn.

0 1

2 (31)

We can add our filler here:

0 1

2 3 (32)
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The condition for an effective Kan complex

We require that the chosen filler for:

0 1

2 3 (33)

Is exactly

0 1

2 (34)

pulled back along s0.
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Pulling back a horn along a degeneracy map: the diagram

Λn
m s∗j (Λ

n
m)

Λn
m G

∆n ∆n+1

∆n

y

(35)

We study s∗j (Λ
n
m) ⊆ ∆n+1 “facewise”.

0 1

2 3

(36)
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Pulling back a horn along a degeneracy map: the diagram

Λn
m

s∗j (Λ
n
m) Λn

m G

∆n ∆n+1 ∆n

⌟

y

dk sj

(35)

We study s∗j (Λ
n
m) ⊆ ∆n+1 “facewise”.

0 1

2 3

(36)

Recall that sj ◦ dk = dk ′ ◦ sj ′ if k ̸= j , j + 1.

So if k ′ ̸= m, this face factors trough
dk ′ ⊆ Λn

m. Hence we know the value of our
map on this face. If k ′ = m, we set m∗ = k ,
which will be our new missing face.
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Λn
m
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n
m) Λn

m G
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⌟

y
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n
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If k ∈ {j , j + 1}, then sj ◦ dk = 1.

We recover exactly our original horn.
We have a chosen filler for these faces and get
a new map Λn

m∗ → G .
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An extended pulled back horn in general

For any map y : Λn
m → G , sj : ∆

n+1 → ∆n, we create a horn map
Λn+1
m∗ → G with

m∗ ∈


{m} if m < j

{m,m + 1} if m = j

{m + 1} if m > j

(37)

Define s∗j (y) : Λ
n+1
m∗ → G by

s∗j (y) ◦ dk =

{
y ◦ sj ◦ dk if k ̸= j , j + 1,m∗

fil(y) if k ∈ {j , j + 1} − {m∗}
(38)
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A formal definition

A simplicial set G is an effective Kan complex if it comes equiped
with an operation fil which

Takes as input any horn map y : Λn
m → G .

Gives as output an extension fil(y) : ∆n → G

In such a way that for any 0 ≤ j ≤ n and any m∗, s∗j (y) as
described above, we have fil(s∗j (y)) = fil(y) ◦ sj .
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Effective Kan complexes

∂(∆n) s∗i (∂(∆
n)) ∂∆n

∆n ∆n+1 ∆n
di/di+1

si

(39)

The left square corresponds to⋃
k ̸=i ,i+1

dk ∪ (di/di+1) (40)

Every inner horn Λn
m can now be represented as⋃

k ̸=m,m+1

dk ∪ dm+1, or
⋃

k ̸=m−1,m

dk ∪ dm−1 (41)
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Simplicial Malcev algebras

Let A be the category of an algebraic theory. TFAE:

a All simplicial objects of A are Kan complexes.

b A allows for a Malcev operation.

c All simplicial objects of A are symmetric effective Kan
complexes.

A Malcev operation µ(·, ·, ·) satisfies

µ(x , x , y) = y , µ(x , y , y) = x (42)

Examples are:

Groups, with µ(x , y , z) = xy−1z

Heyting algebras with
µ(x , y , z) = ((z → y) → x) ∧ ((x → y) → z).
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Lifting against squares

⋃
k ̸=j ,j+1,m∗

dk Λn
m

⋃
k ̸=j ,m∗

dk

⋃
k ̸=m∗

dk

∆n+1 ∆n

∆n+1 ∆n

sj

sj

(43)

Note: on the left side we have a
composition of pushouts of horn
inclusions.
On the right as well.
If we explicitly save this
information, Kan fibrations have
lifts against such squares.
This is a condition for a lifting
AWFS.
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