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Introduction



The Coherent Fragment of Categorical Logic

A pretopos C is a category that has finite limits, universal effective
epimorphisms, and universal disjoint finite coproducts.

A model of a small pretopos C is a pretopos functor C → Set.

• The initial pretopos is FinSet.

• FinSetZ ∶= [Z, FinSet] is also a pretopos. Equivalently, it is
the category of finite Z-sets.

Question: What is Mod(FinSetZ)?
1/16
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Spoiler

We have the following result:

• FinSetZ is categorical: It has only 1 model upto isomorphism.

• However, the automorphism group of this model is non-trivial,

Mod(FinSetZ) ≃ Ẑ,

where Ẑ ≅ ∏p prime Zp is the profinite completion of integers.

• Łos Ultraproduct theorem induces a profinite topology on Ẑ.
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Structure of FinSetZ

Our strategy: Classify objects of FinSetZ upto finite limits and
coproducts, because models M ∶ FinSetZ → Set preserves them.

Well-known facts:

• All X are coproducts of transitive ones X ≅ ∐[x]∈X/∼[x].
• Transitive systems are isomorphic to Z/mZ for some m ≥ 1.
• For any m, n ≥ 1,

FinSetZ(Z/mZ,Z/nZ) ≅ ⎧⎪⎪⎪⎨⎪⎪⎪⎩Z/nZ n ∣ m
0 otherwise

• Composition of maps are modular addition

Z/mZ i //

i+j ##G
GG

GG
GG

G
Z/nZ

j
��

Z/kZ 3/16
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Structure of FinSetZ

Decomposition upto products:

Lemma
If gcd(m, n) = 1, then Z/mZ × Z/nZ ≅ Z/mnZ.

More generally if gcd(m, n) = d and lcm(m, n) = k,

[⟨0, 0⟩,⋯, ⟨0, d − 1⟩] ∶ ∐
d

Z/kZ ≅ Z/mZ × Z/nZ.
Example

• Z/2Z × Z/3Z ≅ Z/6Z.

• Z/2Z × Z/2Z ≅ Z/2Z ⊔ Z/2Z.
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Structure of FinSetZ

Corollary
To determine the value of M, only need to care about the value of the
following diagramme for all primes p, q,⋯:

⋯ 0 / / // Z/pkZ 0 // //

1
��

Z/pk−1Z 0 // //

1
��

⋯ 0 // // Z/pZ1

��

⋮ ⋮ ⋮ ⋮ ⋮

⋯ 0 // // Z/qkZ 0 // //

1
��

Z/qk−1Z 0 // //

1
��

⋯ 0 // // Z/qZ1

��

And different primes are independent from each other.
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Models of FinSetZ

Let M ∶ FinSetZ → Set be a model:

• Let M/pk to denote the value of Z/pkZ under M.

• Aut(Z/pkZ) ≅ Z/pkZ induces an Z/pkZ-action on M/pk .
• The isomorphism in FinSetZ

[⟨0, i⟩1≤i<pk] ∶ ∐
pk

Z/pkZ → Z/pkZ × Z/pkZ,
induces an isomorphism,

[⟨0, i⟩1≤i<pk] ∶ ∐
pk

M/pk → M/pk ×M/pk .
These information suffices to determine Mod(FinSetZ) upto iso.
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Models of FinSetZ

Lemma

M/pk is isomorphic to Z/pkZ.
Proof. [⟨0, i⟩1≤i<pk] ∶ ∐

pk
M/pk ≅ M/pk ×M/pk .

• Injectivity: For any x ∈ M/pk and i ≠ j, x ⋅ i ≠ x ⋅ j.
⇒ Z/pkZ-action on M/pk is free.

• Surjectivity: For any x, y ∈ M/pk , there exists i that x ⋅ i = y.
⇒ Z/pkZ-action on M/pk is transitive.

Corollary

FinSetZ is categorical.
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Category of Models of FinSetZ

Homomorphisms between models are natural transformations:

⋯ 0 // // Z/pk+1Z 0 // //

αk
��

1
��

Z/pkZ 0 // //

αk−1
��

1
��

⋯ 0 // // Z/pZ1

��

α0

��
⋯ 0 // // Z/pk+1Z 0 // //

1

VV
Z/pkZ 0 // //

1

VV
⋯ 0 // // Z/pZ

1

VV

Observation

α = (α0, α1,⋯) is natural (for prime p) iff αk = αk−1 mod pk.
Equivalently, α is a p-adic integer α = ∑∞

i=0 aip
i, αk = ∑k−1

i=0 aip
i.

Corollary

Mod(FinSetZ) ≃ Ẑ ≅ ∏p prime Zp. 8/16
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Ultrastructure on Mod(FinSetZ)



Ultrafilters and Ultracategories

An ultrafilter µ on a set S is a morphism µ ∶ ℘(S) → 2.

Equivalently, µ ⊆ ℘(S) is a maximal (prime) filter.

µ is cofiltered: U,V ∈ µ implies U ∩ V ∈ µ.

An ultracategory M is a category M such that for any S, µ,

• There is a functor ∫ (−)dµ ∶ MS → M.

• These functors satisfy some further coherent data.

9/16
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Ultrastructure on Set

For f ∶ S → Set, for B ⊆ A ⊆ S, there is a canonical projection

∏
s∈A

fs → ∏
s∈B

fs.

Given an ultrafilter µ on S, the ultraproduct is defined as follows,

∫ fdµ = Lim−−→A∈µ
∏
s∈A

fs.

This is a filtered colimit indexed by µ
op!
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Ultrastructure on Discrete Categories

Given a set X considered as a discrete category, an ultrastructure is
the same as a compact Hausdorff topology,

UltSet ≅ Comp.

Let X ∈ Comp. Only consider id ∶ X → X and µ on X:

• ∫ id dµ is the convergent point under µ.

• ∫ id dµ = x iff τx ⊆ µ.

For general f ∶ S → X, µ on S, consider the convergent point of f∗µ,

U ∈ f∗(µ) ⇔ f−1(U) ∈ µ.

11/16
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Łos Ultraproduct Theorem

Theorem (Łos Ultraproduct Theorem)
Given an S-indexed family of models {Ms}s∈S, the ultraproduct
∫ Msdµ for any ultrafilter µ on S is again a model.

Proof.
We need to verify that the following composite is coherent,

C
{Ms}s∈S // SetS ∫ (−)dµ

// Set

• {Ms}s∈S is coherent because each Ms is.

• ∫ (−)dµ ∶ SetS → Set is coherent essentially because it is a
filtered colimit, and that commutes with finite limits.

In particular, computation is point-wise: ∫ Msdµ(C) ≅ ∫ Ms(C)dµ.
12/16
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Ultrastructure on Mod(FinSetZ)
Consider an ultrafilter µ on S and the functor

∫ (−)dµ ∶ Mod(FinSetZ)S → Mod(FinSetZ).
The relevant data is a function ∫ (−)dµ ∶ ẐS → Ẑ.

For the p-adic component, the convergence of {αs}s∈S ∈ ZS
p is

determined by the convergence of each {αs,k}s∈S ∈ (Z/pkZ)S,
S

αs,k

zzttt
ttt

ttt
t

αs,k−1 ⋯
��

αs,1

))RR
RRR

RRR
RRR

RRR
RRR

R

⋯ // // Z/pkZ // // Z/pk−1Z // // ⋯ // // Z/pZ
This equips Zp with the profinite topology as the following limit

Zp ≅ Lim
←−− (⋯ ↠ Z/pkZ ↠ Z/pk−1Z ↠ ⋯ ↠ Z/pZ) .
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Conclusion and Future Work

We have shown an equivalence Mod(FinSetZ) ≃ Ẑ. This provides a
model-theoretic account of the profinite topology on Ẑ.

[Ult] has proved an equivalence

StoneFinSetZ ≃ Prowp(FinSetZ),
• Objects as (X,OX): X ∈ Stone, OX ∈ ModFinSetZ(Sh(X)).
• Morphisms as (f, φ): f ∶ X → Y, φ ∶ f∗OY → OX.

For FinSetZ, we can show

ModFinSetZ(Sh(X)) ≃ BunẐ(X).
We can use this equivalence to classify profinite dynamical systems.
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We can use this equivalence to classify profinite dynamical systems.

14/16



Conclusion and Future Work

We have shown an equivalence Mod(FinSetZ) ≃ Ẑ. This provides a
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Conclusion and Future Work

In fact, the same argument is valid for an arbitrary group G,

Mod(FinSetG) ≃ Ĝ,

where Ĝ is the profinite completion of G.

This story is probably well-known in topos theory (cf. [Sheaves]).
Our argument provides a new site definition of BĜ,

Sh(FinSetG) ≃ BĜ ≃ Sh(S(Ĝ), Jat).
In particular, this shows each BĜ is coherent.

But explicit pretopos might simplfy model-theoretic Galois theory,[C, FinSetG]∗ ≃ {C-models with continuous Ĝ-action},
due to the duality for pretoposes (cf. [Makkai, Ult]).

15/16



Conclusion and Future Work

In fact, the same argument is valid for an arbitrary group G,

Mod(FinSetG) ≃ Ĝ,
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