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Univalent categories

If x : C satisfies a property, then so does y : C given x ∼= y .

Is it really?

1. Example: isInitial(x) → isInitial(y).

2. Counterexample: Is 5 an element of an object in a set?¨

One approach to make it precise is using univalent foundations and
univalent categories.
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Univalent categories

Lemma
Let C be a category and x , y : C objects. Then

idtoisox ,y : (x = y) → (x ∼= y).

Definition
A category C is univalent if for any x , y : C, the function idtoisox ,y
is an equivalence of types.
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Univalent categories: Examples

Example

Univalent categories:

1. The category Set of (h)sets and functions.

2. A category of structured sets and functions that preserve the
structure.

2.1 The category Pos of posets and monotone functions.
2.2 The category Monoid of monoids and

monoid-homomorphisms.

3. If D is univalent, then so is the functor category [C,D].

Non-univalent category:

1. Category generated by

x y

f

g

such that f · g = Idx and g · f = Idy .
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Rezk completion

1. A Rezk completion RC(C) of a category C is the free
univalent category associated to it.

2. Any functor F : C → E with E univalent, factors uniquely via
H:

C

RC(C) E

FH

∃!
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Rezk completion: Definition

CatUniv is a reflective sub-bicategory of Cat.

Definition
A Rezk completion of a category C consists of:

1. a univalent category RC(C) ;
2. a functor H : C → RC(C)

such that for any univalent category E ,

H · (−) : [RC(C), E ] → [C, E ],

is an isomorphism of categories.

Remark

1. Equivalently: H · (−) is adjoint equivalence of categories.

2. Equivalently: H · (−) is weak equivalence of categories.
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Monoidal Rezk completion: What does it mean?

MonCatUniv is a reflective sub-bicategory of MonCat.

Definition
A monoidal Rezk completion of a monoidal category C
1. a univalent monoidal category RC(C) ;
2. a strong monoidal functor H : C → RC(C)

such that for any univalent monoidal category E ,

H · (−) : MonCat(RC(C), E) → MonCat(C, E),

is an isomorphism of categories.
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Monoidal Rezk completion: Approach

strong mon. functors

pentagon, triangle

unitors, associator

(leftunitor) (rightunitor) (associator)

(⊗, I )

(I : C) C : Cat (⊗ : C × C → C)



Adding the unit object

Given: (C : Cat, I : C) H−→ D

1. Unit object on D: Î := H(I ).

2. H preserves the unit: IdH(I ).

3. Universal property
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Adding the tensor

1. Given: (C : Cat,⊗ : C × C → C) H−→ D.

2. Lifted tensor on D: D ×D → D.
Since H×H : C × C → D ×D is a weak equivalence, D
univalent :

C × C D ×D

D

H×H

∀
∃!
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Adding the tensor: Universal property (ESO)

1. Given G : D → E a functor ;

2. And a witness of H ◦ G being a lax tensor-preserving functor.

3. Goal: Construct witness of G being a lax tensor-preserving
functor:

µG : (G × G ) ◦ ⊗E ⇒ ⊗̂ ◦ G .

4. Since H×H is a weak equivalence and E is univalent,

D ×D E × E

C × C C D E

D ×D

G×G

µH·G ⊗EH×H

⊗

H×H

H
µH

G

⊗̂
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Adding the left unitor

1. Given: (C : Cat,⊗, I , λ : (I ⊗−) ⇒ IdC)
H−→ D.

2. Lifted unitor on D: D ×D → D.
Since H : C → D is a weak equivalence, D univalent:

C D

D

H

(H(I )⊗̂−)

IdD
? λ̂
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Adding the left unitor

C D

C × C D ×D

C D

H

(I ,−)

IdC

(Î ,−)

H×H

⊗ ⊗̂

H

µH



Final steps

1. Right unitor: Analogous (to left unitor).

2. Associator: Analogous, use: (H×H)×H.

3. Pentagon and triangle equalities: (m)Eso of H.

4. Strong monoidal functors: Lift of natural iso is a natural iso.
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Rezk completion of a structured category

1. Structured category: Object in
∫
D, where D displayed

bicategory over Cat.

2.

D|Univ D

CatUniv Cat
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⊣

⊣



Rezk completion of a structured category

1. Structured category: Object in
∫
D, where D displayed

bicategory over Cat.

2.

D|Univ D

CatUniv Cat

RC
⊣

⊣



Rezk completion of an object in a bicategory

Not always directly above Cat.

⇝ Arbitrary bicategory B
⇝ No internal notion of univalence

⇒ P : ob(B) → hProp

D|P D

BP B

RC
⊣

⊣

Goal: Study of lifting reflective sub-bicategories.
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Rezk completion of an object in a bicategory

Conjecture

For any pseudo-functor F : B → B

:

If F commutes with RC, i.e. F · RC ≃ RC · F ,
Then D := Alg(F ) admits Rezk-completions.

A signature for those functors:

F := [c | Id | F + F | F × F ]
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Final slide

THANK YOU!
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