The internal language of sheaves Applications to algebraic geometry

Thea Li

November 2022

_		
	hoa	
	I I E A	

A B >
 A
 B >
 A
 B
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

1/27

ヨト・イヨト

Outline

Internal Language

- 2 Kripke-Joyal Semantics
- 3 Modal Operators
- 4 Relation between formulas on X_{\Box} and formulas on X + why it is unclear

Solution

ヨト・イヨト

Table of contents

Internal Language

- 2 Kripke-Joyal Semantics
- 3 Modal Operators

Thea Li

4 Relation between formulas on X_{\Box} and formulas on X + why it is unclear

5 Solution

イロト イポト イヨト イヨト

æ

Internal language of a topos

A topos is a category that has all the properties of **Set** required for finitary reasoning. That is, we can do first order logic inside a topos.

Definition (Elementary topos)

An elementary topos is a category that

- has all finite limits
- is cartesian closed
- has a subobject classifier Ω

Internal language of a topos

A topos is a category that has all the properties of **Set** required for finitary reasoning. That is, we can do first order logic inside a topos.

Definition (Elementary topos) An elementary topos is a category that has all finite limits is cartesian closed has a subobject classifier Ω

Example

The category of sheaves over a topological space X, Sh(X), is a topos.

글 돈 옷 글 돈

< (T) > <

Internal language, context

To be able to do first order logic, we must be able to represent jugment i.e. : $\Gamma \vdash F$.

Context

- Objects $\mathcal F$ are our types
- Variables x of type ${\cal F}$ are interpreted as as the identity morphism id : ${\cal F}\to {\cal F}$
- Terms σ of type \mathcal{F} are interpreted as morphisms $\sigma = (\sigma_1, ..., \sigma_n) : \mathcal{E}_1 \times ... \times \mathcal{E}_n \to \mathcal{F}.$
- Formula are the terms $\mathcal{F} \to \Omega$

So $\Gamma \vdash F$, will be represented by $\varphi : \mathcal{E}_1 \times ... \times \mathcal{E}_n \rightarrow \Omega$.

5/27

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

Internal language

Moreover, we need to build constructors corresponding to \bot , \top , \land , \lor , \Rightarrow , \forall and $\exists.$

Example (Connectives)

For any formulas $\varphi: \mathcal{F} \to \Omega$ and $\psi: \mathcal{F} \to \Omega$ we want to build a new formula

$$\begin{split} \varphi \wedge \psi : \mathcal{F} \xrightarrow{\langle \varphi, \psi \rangle} \Omega \times \Omega \xrightarrow{\wedge_{\Omega}} \Omega \\ \varphi \vee \psi : \mathcal{F} \xrightarrow{\langle \varphi, \psi \rangle} \Omega \times \Omega \xrightarrow{\vee_{\Omega}} \Omega \\ \varphi \Rightarrow \psi : \mathcal{F} \xrightarrow{\langle \varphi, \psi \rangle} \Omega \times \Omega \xrightarrow{\Rightarrow_{\Omega}} \Omega \end{split}$$

Proposition

We can also define $\top, \bot, \exists, \forall$

6/27

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ のへで

Table of contents

Internal Language

- 2 Kripke-Joyal Semantics
 - 3 Modal Operators
- 4 Relation between formulas on X_{\Box} and formulas on X + why it is unclear

5 Solution

æ

8/27

8/27

・ 同 ト ・ ヨ ト ・ ヨ ト

Internal proofs 101

General scheme of internal proofs

Suppose we have a properties P and Q and we want to give a proof of $P \rightarrow Q$. Then we can translate P and Q to their corresponding internal statements [P] and [Q] and give a proof of $[P] \rightarrow [Q]$ instead.

9/27

Notation

Given a formula $\varphi : \mathcal{F} \to \Omega$ and an open set $U \subseteq X$, we have $\varphi_U : \mathcal{F}(U) \to \Omega(U)$. Given $\alpha \in \mathcal{F}(U)$, we will write $\varphi(\alpha)$ instead $\varphi_U(\alpha)$

Notation

For a formula $\varphi : \mathcal{F} \to \Omega$ then we will use $\{x | \varphi(x)\}$ to denote the sheaf it classifies

Notation

Given a formula $\varphi : \mathcal{F} \to \Omega$ and an open set $U \subseteq X$, we have $\varphi_U : \mathcal{F}(U) \to \Omega(U)$. Given $\alpha \in \mathcal{F}(U)$, we will write $\varphi(\alpha)$ instead $\varphi_U(\alpha)$

Notation

For a formula $\varphi : \mathcal{F} \to \Omega$ then we will use $\{x | \varphi(x)\}$ to denote the sheaf it classifies

Definition (Kripke-Joyal semantics)

Let X be a topological space, $U \subseteq X$ and φ be some formula $\varphi : \mathcal{F} \to \Omega$ in the internal language of Sh(X) then.

$$U \vDash \varphi(\alpha)$$
 for $\alpha \in \mathcal{F}(U)$ iff $\alpha \in \{x | \varphi(x)\}(U)$

(I)

Definition (Kripke-Joyal semantics)

Let X be a topological space, $U \subseteq X$ and φ be some formula $\varphi : \mathcal{F} \to \Omega$ in the internal language of Sh(X), then $U \vDash \varphi(\alpha)$ for $\alpha \in \mathcal{F}(U)$ iff $\alpha \in \{x | \varphi(x)\}(U)$.

Definition (Kripke-Joyal semantics)

Let X be a topological space, $U \subseteq X$ and φ be some formula $\varphi : \mathcal{F} \to \Omega$ in the internal language of Sh(X), then $U \vDash \varphi(\alpha)$ for $\alpha \in \mathcal{F}(U)$ iff $\alpha \in \{x | \varphi(x)\}(U)$.

Example (Recursive unwinding)

- $U \vDash (\varphi \land \psi)(\alpha)$ iff $U \vDash \varphi(\alpha)$ and $U \vDash \psi(\alpha)$.
- $U \vDash (\varphi \Rightarrow \psi)(\alpha)$ iff for all open $V \subseteq U \ V \vDash \varphi(\alpha|_V)$ implies $V \vDash \psi(\alpha|_V)$.

◆□▶ ◆母▶ ◆ ミ▶ ◆ ミ▶ ミージへで 11/27

Table of contents

- Internal Language
- 2 Kripke-Joyal Semantics
- 3 Modal Operators

Thea Li

④ Relation between formulas on X_{\Box} and formulas on X + why it is unclear

5 Solution

3. 3

Modalities

Sometimes having a property holding globally is to strict, we also want to be able to describe "local" properties.

We want some operator $\Box: \Omega \to \Omega$ that does this:

Modal operators

Definition (Modal operator)

A modal operator is a map $\Box: \Omega \to \Omega$ such that

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ → ○ ○ ○ 14/27

Modal operators

Definition (Modal operator)

A modal operator is a map $\Box:\Omega\to\Omega$ such that

Examples (Some general modal operators)

For a fixed formula in the internal language $\alpha,$ the following are modal operators

•
$$\Box \varphi := (\alpha \Rightarrow \varphi)$$

• $\Box \varphi := ((\varphi \Rightarrow \alpha) \Rightarrow \alpha$

A D F A A F F A F F A

∃ >

■ のへで 14/27

Specific modal operators and their translations

Since the open set $U \subseteq X$ is an element of $\Omega(X)$ we have that $V \vDash U \iff V \subseteq U$.

Definition (!x)

Because $x \notin V \iff V \models int(X \setminus \{x\})$ we let !x denote $int(X \setminus \{x\})$.

▲□▶ ▲舂▶ ▲≧▶ ▲≧▶ ≧ ∽�� 15/27

Specific modal operators and their translations

Since the open set $U \subseteq X$ is an element of $\Omega(X)$ we have that $V \vDash U \iff V \subseteq U$.

Definition (!x)

Because $x \notin V \iff V \vDash \operatorname{int}(X \setminus \{x\})$ we let !x denote $\operatorname{int}(X \setminus \{x\})$.

Proposition (Instances of modal operators)

For $x \in X$ we have that for all open $V \subseteq X$

- $V \vDash \neg \neg \varphi \iff \exists W \subseteq V$ which is open and dense such that $W \vDash \varphi$
- $V \vDash ((\varphi \Rightarrow !x) \Rightarrow !x) \iff x \notin V \text{ or } \exists W \subseteq V \text{ with } x \in W \text{ and}$ $W \vDash \varphi$

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ・ ● ● のへで 15/27

X_{\Box} , the associated map j

Sometimes studying these local properties directly on X can be hard, thus we will define a subspace, X_{\Box} , which validates the properties on which they are easier to study.

3

X_{\Box} , the associated map j

Sometimes studying these local properties directly on X can be hard, thus we will define a subspace, X_{\Box} , which validates the properties on which they are easier to study.

Definition (Associated map to a modal operator)

A modal operator induces a map on the elements of $\Omega(X)$ (i.e. the open subsets of X)

$$egin{array}{rcl} j: \Omega(X) & \longrightarrow & \Omega(X) \ U & \longmapsto & igcup \{V \subseteq X \mid V ext{ open, } V \vDash \Box U\} \end{array}$$

X_{\Box} , the associated map j

Sometimes studying these local properties directly on X can be hard, thus we will define a subspace, X_{\Box} , which validates the properties on which they are easier to study.

Definition (Associated map to a modal operator)

A modal operator induces a map on the elements of $\Omega(X)$ (i.e. the open subsets of X)

$$j: \Omega(X) \longrightarrow \Omega(X)$$

 $U \longmapsto \bigcup \{V \subseteq X \mid V \text{ open, } V \vDash \Box U \}$

Proposition (Properties of j)

In particular we have that for any open $U, V \subseteq X$

- $U \subseteq j(U)$
- $i(j(U)) \subseteq j(U)$
- $(U \cap V) = j(U) \cap J(V)$

X_{\Box} as an induced subspace

Definition (Subspace associated to a modal operator)

j defines a subspace of X, denoted by X_{\Box} . It has a frame of opens $\mathcal{T}(X_{\Box}) := \{ U \in \Omega(X) \mid j(U) = U \}$

◆□▶ ◆禄▶ ◆臣▶ ★臣▶ ―臣 _ のへで…

X_{\Box} as an induced subspace

Definition (Subspace associated to a modal operator)

j defines a subspace of X, denoted by X_{\Box} . It has a frame of opens $\mathcal{T}(X_{\Box}) := \{ U \in \Omega(X) \mid j(U) = U \}$

Modal operator	associated map	X_{\Box}
$\Box \varphi \equiv (U \Rightarrow \varphi)$	$j(V) = \operatorname{int}(U^c \cup V)$	U
$\Box \varphi \equiv \neg \neg \varphi$	j(V) = int(cl(V))	smallest dense sublocale of <i>X</i>
$\Box \varphi \equiv ((\varphi \Rightarrow !x) \Rightarrow !x)$	$egin{aligned} j(V) &= \ & \left\{ X ext{ if } x \in V \ X \setminus cl(\{x\}) ext{ if } x otin V \end{aligned} ight.$	{ <i>x</i> }

Table of contents

- Relation between formulas on X_{\Box} and formulas on X + why it is unclear 4

. ⊒ . ⊳

Relation between formulas in $Sh(X_{\Box})$ and those in Sh(X)

Theorem (\Box 'd formula relation)

Let X be a topological space and \Box be a modal operator on Sh(X) then for any formula φ

$$X \vDash_{Sh(X)} \varphi^{\Box} \iff X_{\Box} \vDash_{Sh(X_{\Box})} \varphi$$

where all parameters on the right side are pulled back to X_{\Box} along $X_{\Box} \hookrightarrow X$.

3

Relation between formulas in $Sh(X_{\Box})$ and those in Sh(X)

Theorem (\Box 'd formula relation)

Let X be a topological space and \Box be a modal operator on Sh(X) then for any formula φ

$$X \vDash_{Sh(X)} \varphi^{\Box} \iff X_{\Box} \vDash_{Sh(X_{\Box})} \varphi$$

where all parameters on the right side are pulled back to X_{\Box} along $X_{\Box} \hookrightarrow X$.

Proposition (\Box 'd formula relation for geometric formulas) For geometric formulas and geometric implications φ we have

$$\Box \varphi \iff \varphi^{\Box}$$

$$X \vDash_{Sh(X)} \Box \varphi \iff X_{\Box} \vDash_{Sh(X_{\Box})} \varphi$$

Algebraic geometry

Proposition (\Box 'd formula relation for geometric formulas) For geometric formulas and geometric implications φ we have

$$X \vDash_{Sh(X)} \Box \varphi \iff X_{\Box} \vDash_{Sh(X_{\Box})} \varphi$$

A D > A A P >

크 에 비 크 어

Algebraic geometry

Proposition (\Box 'd formula relation for geometric formulas) For geometric formulas and geometric implications φ we have

$$X \vDash_{Sh(X)} \Box \varphi \iff X_{\Box} \vDash_{Sh(X_{\Box})} \varphi$$

Example (Properties on the space vs at stalks) Let $x \in X$ and $\Box \varphi :\equiv ((\varphi \Rightarrow !x) \Rightarrow !x)$, then by the theorem

 $X \vDash \varphi^{\Box} \iff \varphi$ holds at the stalk at x

From the proposition we get that a geometric implication holds if and only if it holds at every stalk.

◆□▶ ◆母▶ ◆ ミ▶ ◆ ミ▶ ミージ へ ⁽²⁾ 20/27

Problem

Theorem

Let X be a topological space and \Box be a modal operator on Sh(X) then for any formula φ

$$X \vDash_{Sh(X)} \varphi^{\Box} \iff X_{\Box} \vDash_{Sh(X_{\Box})} \varphi$$

where all parameters on the right side are pulled back to X_{\Box} along $X_{\Box} \hookrightarrow X$.

Question

Since the formula φ in Sh(X) can have a context that is not a \Box -sheaf as well as domains of quantification's that are not \Box -sheaves, does the equivalence

$$X \vDash_{\mathsf{Sh}(X)} \varphi^{\Box} \iff X_{\Box} \vDash_{\mathsf{Sh}(X_{\Box})} \varphi$$

make sense?

21 / 27

(I)

Table of contents

. ⊒ . ⊳

Solution

Outline of solution

- We are going to define a construction + such that for all sheaves *F*,
 F⁺⁺ is a □-sheaf.
- ② We are going to define an associated translation on formulas such that for a formula φ , $\varphi^{\Box} \Leftrightarrow (\varphi^{\Box})^{++}$
- On this will enable us to prove

$$X \vDash_{\mathsf{Sh}(X)} (\varphi^{\Box})^{++} \iff X_{\Box} \vDash_{\mathsf{Sh}(X_{\Box})} \varphi^{++}$$

And we can conclude

$$X \vDash_{\mathsf{Sh}(X)} \varphi^{\Box} \iff X_{\Box} \vDash_{\mathsf{Sh}(X_{\Box})} \varphi$$

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sheaves on X_{\Box}

What do sheaves on X_{\Box} look like?

Definition (\Box -sheaf)

A \Box -sheaf is a sheaf in Sh(X) that "looks" like a sheaf on X_{\Box}

Proposition

There is an equivalence of categories $Sh(X_{\Box}) \simeq Sh_{\Box}(Sh(X))$, where $Sh_{\Box}(Sh(X))$ is the category of \Box -sheaves in Sh(X). It is induced by the following map

 $i: \mathcal{O}(X) o \mathcal{T}(X_{\Box})$ $U \mapsto j(U)$

24/27

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

How to construct \mathcal{F}^{++}

Definition (Johnstone construction/plus construction) Let $\mathcal{F}, \mathcal{G} \in Sh(X)$ and $f : \mathcal{F} \to \mathcal{G}$, then • $\mathcal{F}^+ = \{S \subseteq \mathcal{F} \Box (\ulcorner S \text{ is singleton} \urcorner)\} / \sim$, where $S \sim T : \Leftrightarrow \Box (S = T)$ • $f^+ : \mathcal{F}^+ \to \mathcal{G}^+$, $[S] \mapsto [\{f(x) | x \in S\}]$ • $\gamma : \mathcal{F} \to \mathcal{F}^+$, $x \mapsto [\{x\}]$

Proposition

For a sheaf \mathcal{F} , \mathcal{F}^{++} is a \Box -sheaf.

◆□▶ ◆母▶ ◆ ミ▶ ◆ ミ▶ ミージ へ ^(25/27)

How to construct φ^{++}

Proposition

Let \Box be a modal operator, φ be some formula, Then $\varphi^{\Box} \Leftrightarrow ((\varphi^{\Box})^+)^+$ intuitionistically.

Definition (+-translation)

• We replace
$$\overline{x} \in \mathcal{F}$$
 by $\overline{x} \in \mathcal{F}^+$.

- Terms $x_1, ..., x_n$ and $f(\overline{y})$ are replaced by $\gamma(x_1), ..., \gamma(x_n)$ and $f^+(\overline{y})$.
- φ^+ of a formula $\varphi : \mathcal{F} \to \Omega$ is attained by replacing all free variables with their γ -images and morphisms and domains of quantifications with their +-constructions, e.g.

$$(\forall x : \mathcal{F} f(x) = g(x))^+ := \forall x : \mathcal{F}^+ f^+(x) = g^+(x).$$

∃ 9900

26/27

26 / 27

・ロト ・四ト ・ヨト ・ ヨト

Conclusion

Theorem

Let X be a topological space and \Box be a modal operator on Sh(X) then for any formula φ

$$X \vDash_{Sh(X)} (\varphi^{\Box})^{++} \iff X_{\Box} \vDash_{Sh(X_{\Box})} \varphi^{++}$$

Now when proving the theorem we can pretend that the context and that all domains of quantification are \Box -sheaves.

Theorem

Let X be a topological space and \Box be a modal operator on Sh(X) then for any formula φ

$$X \vDash_{Sh(X)} \varphi^{\Box} \iff X_{\Box} \vDash_{Sh(X_{\Box})} \varphi$$