Introduction	Background	Syntax	Semantics	
00000	00000	0000	0000	

Monotone Type Theory: The Simplex Category as a Classifying Category

Jeremy Kirn with Dr Benno van den Berg

The Simplex Category

- Δ is the simplex category
- Objects are nonempty, finite ordinals

$$[n] = \{0, ..., n\} = n + 1$$

• Morphisms $f : [n] \rightarrow [m]$ are monotone functions

$$j \le k$$
 implies $f(j) \le f(k)$

Standard Simplices

• The standard simplex functor embeds Δ into Top

$$\begin{array}{rcl} \Delta & \hookrightarrow & \mathsf{Top} \\ [n] & \mapsto & \Delta^n \end{array}$$

• The standard *n*-simplex is the subspace

$$\Delta^n = \{(t_1, ..., t_n) \mid t_1 \leq ... \leq t_n\} \subseteq [0, 1]^n \subseteq \mathbb{R}^n$$

Introduction 00000	Background 00000	Syntax 0000	Semantics 0000	
Example				

$$\Delta^3 = \{(t_1, t_2, t_3) \mid t_1 \le t_2 \le t_3\} \subseteq [0, 1]^3$$

Type Theoretic Presentation of Δ

- Develop monotone type theory \mathbb{T}_m with $\mathbb{C}_{\mathbb{T}_m} \cong \Delta$
- Present sound and strongly complete semantics for \mathbb{T}_m

Introduction	Background	Syntax	Semantics	
00000	00000	0000	0000	

Overview

- Background
- Syntax
- Semantics
- Future Research

Cartesian Type Theory

- Cartesian type theory \mathbb{T}_c has one type \mathbb{I} and two constants $0:\mathbb{I},\ 1:\mathbb{I}$
- $[x_1:\mathbb{I},...,x_n:\mathbb{I}] \vdash t:\mathbb{I}$ iff $t \in \{0, x_1,...,x_n,1\}$
- \bullet A model in a category $\mathbb C$ is a bipointed object in $\mathbb C$

$$\llbracket \rrbracket \rrbracket^0 \xrightarrow{\llbracket 1 \rrbracket} \llbracket \rrbracket$$

Classifying Category

- $\mathbb{C}_{\mathbb{T}_c}$ is the classifying category of \mathbb{T}_c
- Objects are contexts $[x_1 : \mathbb{I}, ..., x_n : \mathbb{I}]$
- Morphisms are context morphisms

$$\langle t_1, \dots, t_m \rangle : [x_1 : \mathbb{I}, \dots, x_n : \mathbb{I}] \rightarrow [y_1 : \mathbb{I}, \dots, y_m : \mathbb{I}]$$

where $t_j \in \{0, x_1, ..., x_n, 1\}$

• $\mathbb{C}_{\mathbb{T}_c} \cong \square$ = Cartesian cube category, objects are \mathbb{I}^n

Martin-Löf Type Theory

- Constructive foundation of mathematics
- Dependently typed programming language
- Assuming univalence as an axiom breaks the Curry-Howard isomorphism: No longer a programming language

Cartesian Cubical Type Theory

- There is a model of Martin-Löf type theory in cSet = [□^{op}, Set]
- Allows a computational interpretation of univalence
- Pull features of cSet model back into the syntax
- Augment Martin-Löf type theory with Cartesian type theory to talk about □ ↔ cSet

Simplicial Type Theory

- Desirable to have analogous extension of type theory based on sSet = [Δ^{op} , Set]
- Simplicial methods more common than cubical methods in homotopy theory and higher category theory
- ${\scriptstyle \bullet}$ First step is to give a type theoretic presentation of Δ

Introduction	Background	Syntax	Semantics	
00000	00000	●000	0000	

Embedding Δ into syntax

Introduction Background Syntax Semantics Future Research

Monotone Context Morphisms

$$f:[n] \to [m] \text{ is mapped to}$$
$$\langle t_1, ..., t_m \rangle : [x_1 : \mathbb{I}, ..., x_n : \mathbb{I}] \to [y_1 : \mathbb{I}, ..., y_m : \mathbb{I}]$$
where

 $t_1 \leq \ldots \leq t_m$

according to the linear order

 $0 \le x_1 \le \ldots \le x_n \le 1$

Introduction Background Syntax Semantics Future Research

Modifying Cartesian Type Theory

• Introduce the binary predicate symbol $\leq \mathbb{I}, \mathbb{I}$

$$[x_1:\mathbb{I},...,x_n:\mathbb{I}] \vdash 0 \le x_1 \le ... \le x_n \le 1:\mathbb{I}$$

- Take away the structural rule of exchange
- Generate only monotone context morphisms

$$\frac{\Gamma \vdash \langle \tau, t \rangle \Rightarrow [\Theta, y : \mathbb{I}] \quad \Gamma \vdash t \le u : \mathbb{I}}{\Gamma \vdash \langle \tau, t, u \rangle \Rightarrow [\Theta, y : \mathbb{I}, y' : \mathbb{I}]}$$

Introduction	Background	Syntax	Semantics	
00000	00000	000●	0000	

- $\mathbb{C}_{\mathbb{T}_m}$ is the classifying category of \mathbb{T}_m
- Objects are contexts
- Morphisms are *monotone* context morphisms

• $\mathbb{C}_{\mathbb{T}_m} \cong \Delta$

Intervals in a Topos

 \bullet An internal interval I in a topos ${\cal E}$ is a linear order with top and bottom elements

$$\llbracket \mathbb{I} \rrbracket^0 \xrightarrow[0]{} \llbracket \mathbb{I} \rrbracket = \mathbb{I} \qquad \llbracket \leq \rrbracket \longleftrightarrow \llbracket \mathbb{I} \rrbracket^2 = \mathbb{I}^2$$

• An internal *n*-simplex is a subobject

$$\Delta_{\mathtt{I}}^{n} = \{(x_1, \ldots, x_n) \mid x_1 \leq \ldots \leq x_n\} \hookrightarrow \mathtt{I}^{n}$$

Modelling Monotone Type Theory

- $\leq : \mathbb{I}, \mathbb{I} \text{ interpreted as } [\![\leq]\!] \hookrightarrow [\![\mathbb{I}]\!]^2 = \mathbb{I}^2$
- The order of $\Gamma = [x_1 : \mathbb{I}, ..., x_n : \mathbb{I}]$ is reflected in

$$\Delta_{\mathtt{I}}^{n} = \left\{ \left(x_{1}, \ldots, x_{n} \right) \mid x_{1} \leq \ldots \leq x_{n} \right\} \hookrightarrow \llbracket \Gamma \rrbracket = \llbracket \mathbb{I} \rrbracket^{n} = \mathtt{I}^{n}$$

Modelling Monotone Type Theory

• The monotonicity of context morphisms is reflected in

Properties of Semantics

- Sound because of properties of internal intervals
- Strongly complete because of model in sSet given by the generic interval

$$\Delta(-,[1]):\Delta^{\mathsf{op}}\to\mathsf{Set}$$

Introduction	Background	Syntax	Semantics	Future Research
00000	00000	0000	0000	●0

Future Research

- Develop a type theoretic presentation of cofibrations in sSet
- A 2-categorical perspective on Δ

Thank you!

Jeremy Kirn

Monotone Type Theory 21 / 21