
The correspondence between LCCCs and
dependent type theories from a univalent

perspective

Niels van der Weide

27 October, 2021

1/29



Categorical Models

I Categorical models have been used to prove meta-theoretical
properties of type theories (consistency, canonicity,
conservativity, normalization)

I Such properties are proven by finding a nice model

I Often, we can acquire something stronger, namely an
equivalence between a class of models and logic

2/29



Lambek’s Theorem

Theorem (Lambek1)

The categories of lambda-calculi and of cartesian categories are
equivalent.

Slogan: the simply-typed lambda calculus is the internal
language of cartesian closed categories.

1Lambek, J. ”Cartesian closed categories and typed λ-calculi.”

3/29



Dependent Types

I Dependent types: types can dependent on variables.

I This way, one can represent propositions as types.

I Example: the identity type, x = y (the identity type).

In this talk, we look at models of dependent type theory with

I Extensional identity types

I Sigma types

I Dependent products

Call it MLTT∏
,
∑
,ExtId

4/29



Seely’s Theorem

Recall:

I objects of the slice category C/Y are arrows X → Y .

I C is locally cartesian closed if C/Y is cartesian closed for
every object Y .

Theorem (Seely2)

The categories of MLTT∏
,
∑
,ExtId and of LCCCs are equivalent.

2Seely, R.A.G. ”Locally cartesian closed categories and type theory.”

5/29



Core Idea

We interpret type theory as follows

I Contexts Γ as objects

I Types A in context Γ: morphisms A→ Γ

I Terms of type A: sections of A→ Γ

I Substitutions from Γ1 to Γ2: morphisms Γ1 → Γ2

I Substitution of types: pullbacks

6/29



A Problem!

A[id] //

��
J

A

��

Γ
id
// Γ

I In type theory, A[id] must be equal to A.

I However, we can only guarantee they are isomorphic!

General challenge: how to interpret dependent type theory in
categories?

7/29



Categorical Models of Dependent Type Theory

I Comprehension categories3 (based on the notion of
Grothendieck fibration)

I Categories with families4

I many others (categories with attributes, natural models, ...)

3Jacobs, B. ”Comprehension categories and the semantics of type
dependency.”

4Dybjer, P. ”Internal type theory.”

8/29



Categorical Models of Dependent Type Theory

I Comprehension categories3 (based on the notion of
Grothendieck fibration)

I Categories with families4

I many others (categories with attributes, natural models, ...)

3Jacobs, B. ”Comprehension categories and the semantics of type
dependency.”

4Dybjer, P. ”Internal type theory.”

8/29



Grothendieck Fibrations

Definition
A functor P : E → B is called a Grothendieck fibration if for
every arrow x → P(y) (in B) there is an x in E and a cartesian
morphism x → y such that P(x) = x .

E

P
��

x // y

B x // P(y)

Used to interpret substitution.

9/29



Split Fibrations

Lift of identity arrow:

E

P
��

z // x

B P(x)
id
// P(x)

(We can draw a similar diagram for the composition)

Definition
A Grothendieck fibration is called split if

I the lift of id : x → x is the identity arrow

I the lift of a composition is the composition of the lifts.

Substitution laws hold up to equality.

10/29



Example of a fibration

If C has pullbacks, then codomain functor cod : C→ → C is a
fibration. Not a split fibration in general.

11/29



Hofmann’s Solution6

Main idea:

I We have a category with pullbacks.

I Then the codomain functor is a fibration.

I Replace it by a split fibration.

Theorem (Bénabou5)

Every fibration is equivalent to a split fibration. In fact, the
2-category of fibrations is biequivalent to the 2-category of split
fibrations.

5Bénabou, J. ”Des Catégories Fibrées lecture notes by J.R. Roisin ”
6Hofmann, M. ”On the interpretation of type theory in locally cartesian

closed categories.”

12/29



Curien’s Solution7

I Use a type theory in which the substitution laws only hold up
to isomorphism

I So: type equalities are annotated in terms

I Prove coherence (all proofs of A = B have the same
interpretation)

7Curien, P.L. ”Substitution up to Isomorphism.”

13/29



Acquiring an equivalence

Democracy: for every context Γ there is a type Γ such that Γ is
isomorphic to the empty context extended with Γ.

Theorem (Clairambault and Dybjer8)

I The bicategories of finitely complete categories and
democratic CwFs with extensional identity types and sigma
types are biequivalent.

I The bicategories of LCCCs and democratic CwFs with
extensional identity types, sigma types, and dependent
products are biequivalent.

The proof makes use of Hofmann’s solution.

8Clairambault, P., and Dybjer, P. ”The biequivalence of locally cartesian
closed categories and Martin-Löf type theories.”

14/29



Acquiring an equivalence

Democracy: for every context Γ there is a type Γ such that Γ is
isomorphic to the empty context extended with Γ.

Theorem (Clairambault and Dybjer8)

I The bicategories of finitely complete categories and
democratic CwFs with extensional identity types and sigma
types are biequivalent.

I The bicategories of LCCCs and democratic CwFs with
extensional identity types, sigma types, and dependent
products are biequivalent.

The proof makes use of Hofmann’s solution.

8Clairambault, P., and Dybjer, P. ”The biequivalence of locally cartesian
closed categories and Martin-Löf type theories.”

14/29



Acquiring an equivalence

Democracy: for every context Γ there is a type Γ such that Γ is
isomorphic to the empty context extended with Γ.

Theorem (Clairambault and Dybjer8)

I The bicategories of finitely complete categories and
democratic CwFs with extensional identity types and sigma
types are biequivalent.

I The bicategories of LCCCs and democratic CwFs with
extensional identity types, sigma types, and dependent
products are biequivalent.

The proof makes use of Hofmann’s solution.

8Clairambault, P., and Dybjer, P. ”The biequivalence of locally cartesian
closed categories and Martin-Löf type theories.”

14/29



Univalent Foundations (UF)

I Types as spaces, terms as points, equalities as paths

I Equality is proof relevant: not every proof that x = y has to
be equal

I Univalence axiom: equality of types is equivalence of types

I Model in simplicial sets9

9Kapulkin, K. and Lumsdaine, P. L. “The simplicial model of univalent
foundations (after Voevodsky)”

15/29



The Univalence Axiom

Note: there is a canonical map τ sending equalities X = Y to
equivalences X ' Y .

Axiom (The Univalence Axiom)

The map τ is an equivalence.

16/29



Equality is Proof Relevant!

I By univalence, the types X = Y and X ' Y are equivalent
for all types X and Y .

I Let 2 be the type with two inhabitants.

I There are two equivalences from 2 to 2.

I Hence, not all proofs that 2 = 2 are equal.

17/29



Sets in UF

Definition
A type X is called a set if for all x , y : X and p, q : x = y , we have
p = q.

I Examples: the unit type, the type of natural numbers

I Non-example: the universe

18/29



Strict Categories

Category: usual definitions, but for all objects X and Y the
morphisms X → Y must be a set.

Definition (Strict Category10)

A category is called strict if the type of objects is a set.

10Ahrens, B., Kapulkin, K., and Shulman, M. ”Univalent categories and the
Rezk completion.”

19/29



Univalent Categories

Note: there is a map τX ,Y that sends equalities X = Y of objects
to isomorphisms X ∼= Y .

Definition (Univalent Category11)

A category is called univalent if the map τX ,Y is an equivalence
for all objects X and Y .

Note: the category Set of sets is univalent and not strict.

11Ahrens, B., Kapulkin, K., and Shulman, M. ”Univalent categories and the
Rezk completion.”

20/29



Motivation

I Problem in type theory: define the syntax of type theory
within type theory? See: the initiality project (De Boer,
Brunerie, Lumsdaine, Mörtberg)12, Altenkirch and Kaposi13.

I These are based on strict categories.

I Drawback: Set falls out of the scope.

12De Boer, M., Brunerie, G., Lumsdaine, P.L., Mörtberg, A. ”A formalization
of the initiality conjecture in Agda.”

13Altenkirch, T., and Kaposi, A. ”Type theory in type theory using quotient
inductive types.”

21/29



Our goal

Find an analogue of Clairambault’s and Dybjer’s theorem for
univalent categories.

22/29



Categories with Families

Definition (Just a part)

A category with families consists of

I A category C
I A functor T from Cop to the category of families of sets

I ...

Note:

I Objects of C are called contexts, morphisms in C are called
substitutions.

I From T , we get a functor Ty : Cop → Set

23/29



Problem!

I This is too restrictive!

I In Set, types in the empty context are just sets. This does
not form a set.

I Hence, CwFs cannot be used for our purposes.

24/29



Intermezzo: Displayed Categories

One can define fibrations without referring to the equality of
objects by using displayed categories.

Definition (Displayed Category14)

Let C be a category. A displayed category D over C consists of

I For every object x : C a type Dx of displayed objects over x

I For all morphism f : x → y and displayed objects x : Dx and
y : Dy a set x →f y of displayed arrows over f

I (dependent versions of identity, composition, and the laws)

So: avoid equality of objects by talking about objects over

14Ahrens, B., and Lumsdaine, P.L. ”Displayed categories.”

25/29



Full Comprehension Categories

Definition
A comprehension category consists of a fibration P and a
cartesian functor χ such that the following diagram commutes on
the nose

E

P
��

χ
// C→

cod
~~
C

A comprehension category is called full if χ is full and faithful.

26/29



Main conjecture

Conjecture

The bicategories of univalent left exact categories and democratic
full comprehension categories with extensional identity types and
sigma types are biequivalent.

Formalization in UniMath is work in progress15.

15https://github.com/nmvdw/UniMath/tree/comp-cat

27/29



The Role of Intensionality

I Univalent foundations is an intensional type theory

I As such, type equalities are annotated in terms

I Equality of objects in a category is isomorphism

I So: when writing down syntactical rules, we annotate the
term with the relevant isomorphisms.

I Also needed: coherencies for type equalities

Compare to

I Curien’s solution

I Coherent type theory16

16https://bitbucket.org/akaposi/qiitcont/src/master/TT/Coh/

28/29



Conclusion

I Clairambault’s and Dybjer’s theorem is interesting to study in
univalent foundations

I Due to intensionality: type equalities are annotated (similar to
Curien)

I Due to univalent categories: coherencies are needed in the
syntax

I In addition, CwFs need to be replaced by full comprehension
categories

29/29


	Categorical Logic
	Univalent Foundations
	Interesting Aspects of the Proof
	Conclusion

